સદિશ $\mathop A\limits^ \to \,$ અને $ \,\mathop B\limits^ \to $ x-અક્ષની સાપેક્ષે અનુક્રમે $20^0$  અને $110^0$ ખૂણો બનાવે છે. આ સદિશોનું મૂલ્ય અનુક્રમે $5 m$ અને $12 m$ છેતો તેના પરિણામી સદીશે x-અક્ષ  સાથે રચાતા ખૂણાનું મૂલ્ય ..... મળેે.

  • A

    $\tan^{-1}(12/5)$

  • B

    $\tan^{-1}(12/5) +20$

  • C

    $\tan^{-1}(14/7) +90 $

  • D

    $\tan^{-1}(12/17) + 20$

Similar Questions

$\overrightarrow A \, = \,3\widehat i\, + \,2\widehat j$ , $\overrightarrow B \, = \widehat {\,i} + \widehat j - 2\widehat k$ છે, તો તેમનો સરવાળો બૈજિક રીતે કરો.

શું બે સદિશોનો પરિણામી સદિશ શૂન્ય થઈ શકે?

  • [IIT 2000]

બે સદિશો $ \hat i - 2\hat j + 2\hat k $ અને $ 2\hat i + \hat j - \hat k, $ માં કયો સદિશ ઉમેરવાથી  $X-$ દિશામાંનો એકમ સદિશ મળે.

$3P$ અને $2P$ નું પરિણામી $R$ છે.જો પ્રથમ બળ બમણું કરતાં પરિણામી બમણું થાય,તો બંને બળ વચ્ચેનો ખૂણો  ........... $^o$ હશે.

નીચે આપેલ કોલમ $-I$ માં સદિશો ,$\vec  a \,$ $\vec  b \,$  અને  $\vec  c \,$ વચ્ચેનો સંબંધ અને કોલમ $-II$ માં ,$\vec  a \,$ $\vec  b \,$  અને  $\vec  c \,$ સદિશો $XY$ સમતલમાં નમન સાથે દર્શાવેલ છે, તો કોલમ $-I$ અને કોલમ $-II$ ને સારી રીતે જોડો. 

 કોલમ $-I$  કોલમ $-II$
$(a)$ $\vec a \, + \,\,\vec b \, = \,\,\vec c $ $(i)$ Image
$(b)$ $\vec a \, - \,\,\vec c \, = \,\,\vec b$ $(ii)$ Image
$(c)$ $\vec b \, - \,\,\vec a \, = \,\,\vec c $ $(iii)$ Image
$(d)$ $\vec a \, + \,\,\vec b \, + \,\,\vec c =0$ $(iv)$ Image