$(\overrightarrow{{A}})$ અને $(\overrightarrow{{A}}-\overrightarrow{{B}})$ સદિશ વચ્ચેનો ખૂણો કેટલો થાય?
$\tan ^{-1}\left(\frac{-\frac{{B}}{2}}{{A}-{B} \frac{\sqrt{3}}{2}}\right)$
$\tan ^{-1}\left(\frac{{A}}{0.7 {B}}\right)$
$\tan ^{-1}\left(\frac{\sqrt{3} {B}}{2 {A}-{B}}\right)$
$\tan ^{-1}\left(\frac{{B} \cos \theta}{{A}-{B} \sin \theta}\right)$
$ABC$ એ સમબાજુ ત્રિકોણ છે. દરેક બાજુની લંબાઈ $'a'$ અને તેનું પરિકેન્દ્ર $O$ છે. $\overrightarrow{A B}+\overrightarrow{A C}=n \overrightarrow{A O}$ હોય તો $n = $ ........
બે સદીશો $\mathop A\limits^ \to \,$ અને $\mathop B\limits^ \to \,$ હોય તો , $\mathop A\limits^ \to \, + \mathop B\limits^ \to \,\,\, = \,\,\mathop C\limits^ \to $ અને ${A^2}\,\, + \;\,{B^2}\,\, = {C^2}$ છે . નીચેના માંથી ક્યું વિધાન સાચું છે .
$A$ અને $\frac{A}{2}$ નાં મૂલ્યો ધરાવતા બે બળો એકબીજાને લંબ છે. તેનું પરિણામીનું મૂલ્ય ...... છે.
કેટલાક સદિશોના પરિણામીનો $x$ ઘટક.......
(a) એ સદિશોના $x$ ઘટકના સરવાળા જેટલો હોય છે.
(b) સદિશોના મૂલ્યના સરવાળા કરતાં કદાચ ઓછો હોય છે.
(c) સદિશોના મૂલ્યના સરવાળા કરતાં કદાચ વધારે હોય છે.
(d) સદિશોના મૂલ્યના સરવાળા જેટલો હોય છે.
આપેલા વિધાન માથી સાચા વિધાન ક્યાં છે ?
સદિશોના સરવાળા માટેની બે રીતોના નામ આપો. તથા સદિશોના સરવાળા માટે સમાંતરબાજુ ચતુષ્કોણનો નિયમ લખો.