$\vec A $ અને $\vec B $ પરિણામી સદિશ $\vec A $ ને લંબ છે .$\vec A $ અને $\vec B $ વચ્ચેનો ખૂણો કેટલો હશે ?
${\cos ^{ - 1}}\left( {\frac{A}{B}} \right)$
${\cos ^{ - 1}}\left( { - \frac{A}{B}} \right)$
${\sin ^{ - 1}}\,\,\left( {\frac{A}{B}} \right)$
${\sin ^{ - 1}}\,\,\left( { - \frac{A}{B}} \right)$
બે સદિશ $\vec A$ અને $\vec B$ સમાન માન ધરાવે છે. $(\vec A + \vec B)$ નું માન એ $(\vec A - \vec B)$ ના માન કરતા $n$ ગણું છે. $\vec A$ અને $\vec B$ વચ્ચેનો ખૂણો કેટલો હશે?
આકૃતિમાં ત્રણ સદિશો$\mathop {\,a}\limits^ \to \,,\,\mathop {\rm{b}}\limits^ \to \,\,$ અને $ \,\mathop {\rm{c}}\limits^ \to \,$આપેલી જ્યાં $R$ એ $PQ$ નું મધ્યબિંદુ છે તો નીચેના પૈકી કયો સંબંધ સાચો છે ?
બે બળો $\overrightarrow{\mathrm{P}}$ અને $\overrightarrow{\mathrm{Q}}$ ના સરવાળાનું પરિણામી $\overrightarrow{\mathrm{R}}$ એવી રીતે મળે છે કે જેથી $|\overrightarrow{\mathrm{R}}|=|\overrightarrow{\mathrm{P}}| .$ તો $2 \overrightarrow{\mathrm{P}}$ અને $\overrightarrow{\mathrm{Q}}$ ના પરિણામી એ $\overrightarrow{\mathrm{Q}}$ સાથે બનાવેલો ખૂણો (ડિગ્રીમાં) કેટલો હશે?
$X$ અક્ષ સાથે અનુક્રમે $45^o$, $135^o$ અને $315^o$ નો ખૂણો બનાવતાં ત્રણ સદિશ $\mathop A\limits^ \to \,\,,\,\,\mathop B\limits^ \to \,\,$ અને $\mathop C\limits^ \to $ જેમનું મૂલ્ય $ 50 $ એકમ, જે સમાન છે. તેમનો સરવાળો ......એકમ થાય.
જો $\vec P , \vec Q $ અને $\vec R $ ના મૂલ્યો $5$,$12$ અને $13$ એકમ છે અને જો $\vec P + \vec Q =\vec R $ હોય તો $\vec Q $ અને $\vec R $ વચ્ચેનો ખૂણો ........ હોય