બે સદિશોના સરવાળા માટે સમાંતરબાજુ ચતુષ્કોણની રીત સમજાવો. સમજાવો કે આ રીત ત્રિકોણની રીતને સમતુલ્ય છે.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

આકૃતિ (a) માં દર્શવેલા બે સદિશો $\overrightarrow{ A }$ અને $\overrightarrow{ B }$ નો સદિશ સરવાળો કરવો છે.

આકૃતિ $(b)$ માં દર્શાવ્યા પ્રમાણે નિશ્ચિત બિંદુ $O$ પસંદ કરો. $\vec{A}$ અને $\vec{B}$ જેની પાસપાસેની બાજુઓ બને તેવો સમાંતરબાજુ ચતુષ્કોણ $\square^{ m }$ OPSQ વિચારો. O માંથી પસાર થતો વિકર્ણ $OS$ વિચારો.

સદિશ $\overrightarrow{ OS }$ એ $\overrightarrow{ A }$ અને $\overrightarrow{ B }$ નો પરિણામી સદિશ દર્શાવે છે.

$\overrightarrow{ OS }=\overrightarrow{ OP }+\overrightarrow{ OQ } \quad \therefore \overrightarrow{ R }=\overrightarrow{ A }+\overrightarrow{ B }$

આકૃતિ (c) માં સદિશો $\overrightarrow{ A }$ અને $\overrightarrow{ B }$ નો પરિણામી સદિશ મેળવવા માટેનો ત્રિકોણનો નિયમ દર્શાવ્યો છે. બંને આકૃતિ પરથી સ્પષ્ટ થાય છે કે બંને રીતોમાં સમાન પરિણામ મળે છે. એટલે કે બંને રીતો એકબીજાને સમતુલ્ય છે.

અહીં, પરિણામી સદિશ $\overrightarrow{ R }$ નું મૂલ્ય $\overrightarrow{ A }$ અને $\overrightarrow{ B }$ ના મૂલ્યના સરવાળા જેટલું અથવા તેથી ઓછું હોય છે.

$\therefore|\overrightarrow{ R }| \leq|\overrightarrow{ A }|+|\overrightarrow{ B }|$

885-s57

Similar Questions

અલગ અલગ મૂલ્ય ધરાવતાં એક જ સમતલના કેટલા સદિશોનો સરવાળો કરતાં પરિણામી શૂન્ય મળે છે?

નીચે આપેલી જોડમાંથી કઇ જોડનું પરિણામી શૂન્ય ના થાય?

આકૃતિમાં દર્શાવ્યા અનુસાર દરેકે $A$ મૂલ્ય ધરાવતા ત્રણ સદિશો $\overrightarrow{O P,} \ \overrightarrow{O Q}$ અને $\overrightarrow{O R}$ અસરકર્તા છે. ત્રણ સદિશોનો પરિણામી $\mathrm{A} \sqrt{x}$ છે. $x$ નું મૂલ્ય. . . . . . થશે.

  • [JEE MAIN 2024]

સ્થિર અવસ્થામાં રહેલો પદાર્થ પર ત્રણ બળ સદીશ $2 \hat{i}+2 \hat{j}, 2 \hat{i}-2 \hat{j}$ અને $-4 \hat{i}$ દ્વારા લગાવવામાં આવે છે. તો પદાર્થ કઈ દિશામાં ગતિ કરશે?

$5\, N$ અને $10\, N$ નું પરિણામી નીચેનામાથી કયું શકય નથી ? ........ $N$