બે સદિશોના સરવાળા માટે સમાંતરબાજુ ચતુષ્કોણની રીત સમજાવો. સમજાવો કે આ રીત ત્રિકોણની રીતને સમતુલ્ય છે.
આકૃતિ (a) માં દર્શવેલા બે સદિશો $\overrightarrow{ A }$ અને $\overrightarrow{ B }$ નો સદિશ સરવાળો કરવો છે.
આકૃતિ $(b)$ માં દર્શાવ્યા પ્રમાણે નિશ્ચિત બિંદુ $O$ પસંદ કરો. $\vec{A}$ અને $\vec{B}$ જેની પાસપાસેની બાજુઓ બને તેવો સમાંતરબાજુ ચતુષ્કોણ $\square^{ m }$ OPSQ વિચારો. O માંથી પસાર થતો વિકર્ણ $OS$ વિચારો.
સદિશ $\overrightarrow{ OS }$ એ $\overrightarrow{ A }$ અને $\overrightarrow{ B }$ નો પરિણામી સદિશ દર્શાવે છે.
$\overrightarrow{ OS }=\overrightarrow{ OP }+\overrightarrow{ OQ } \quad \therefore \overrightarrow{ R }=\overrightarrow{ A }+\overrightarrow{ B }$
આકૃતિ (c) માં સદિશો $\overrightarrow{ A }$ અને $\overrightarrow{ B }$ નો પરિણામી સદિશ મેળવવા માટેનો ત્રિકોણનો નિયમ દર્શાવ્યો છે. બંને આકૃતિ પરથી સ્પષ્ટ થાય છે કે બંને રીતોમાં સમાન પરિણામ મળે છે. એટલે કે બંને રીતો એકબીજાને સમતુલ્ય છે.
અહીં, પરિણામી સદિશ $\overrightarrow{ R }$ નું મૂલ્ય $\overrightarrow{ A }$ અને $\overrightarrow{ B }$ ના મૂલ્યના સરવાળા જેટલું અથવા તેથી ઓછું હોય છે.
$\therefore|\overrightarrow{ R }| \leq|\overrightarrow{ A }|+|\overrightarrow{ B }|$
જો $\vec{P}+\vec{Q}=\vec{P}-\vec{Q}$, હોય તો,
જો $ \overrightarrow A ,\,\overrightarrow B $ and $ \overrightarrow C $ ના મૂલ્ય $12, 5$ અને $13$ હોય અને $ \overrightarrow A + \overrightarrow B = \overrightarrow C $ , તો સદિશ $ \overrightarrow A $ અને $ \overrightarrow B $ વચ્ચેનો ખૂણો કેટલો હશે?
$ABC$ એ સમબાજુ ત્રિકોણ છે. દરેક બાજુની લંબાઈ $a$ અને તેનું પરિકેન્દ્ર $O$ છે. If $|\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{A C}|=n a$ હોય તો $n =....$
બે સદિશોના પરિણામી સદિશનું મૂલ્ય અને દિશા શોધવાનું સમીકરણ લખો.
આકૃતિમાં દર્શાવેલ કણ $5 \,ms^{-1}$ ની અચળ ઝડપથી ભ્રમણ કરે છે. તો અડધા પરિભ્રમણ દરમિયાન વેગમાં કેટલા ........$ms^{-1}$ નો ફેરફાર થાય?