English
Hindi
3-1.Vectors
easy

સદિશ $\mathop A\limits^ \to  \,\, = \,\,\hat i\,\, + \;\,\hat j\,\, + \;\,\sqrt 2 \hat k$ અને $Z$ અક્ષ વચ્ચેનો ખૂણો ....... $^o$ શોધો .

A

$0$

B

$45$

C

$60$

D

$90$

Solution

Given

Lets,

$\vec{A} =\hat{i}+\hat{j}+\sqrt{2} \hat{k}$

$\vec{B}(z-\text { axis }) =\hat{k}$

We know formula

$\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta$

$\cos \theta=\frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|}=\frac{(0+0+\sqrt{2})}{\left(\sqrt{1^2+1^2+\sqrt{2}^2}\right) \cdot \sqrt{1^2}}$

$=\frac{\sqrt{2}}{\sqrt{4}}=\frac{1}{\sqrt{2}}$

$\cos \theta =\frac{1}{\sqrt{2}}$

$\theta =\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)=45^{\circ}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.