$\hat i.\left( {\hat j \times \,\,\hat k} \right) + \;\,\hat j\,.\,\left( {\hat k \times \hat i} \right) + \hat k.\left( {\hat i \times \hat j} \right)=$

  • A

    $0$

  • B

    $1$

  • C

    $2$

  • D

    $3$

Similar Questions

For what value of $x$, will the two vectors $A =2 \hat{ i }+2 \hat{ j }-x \hat{ k }$ and $B =2 \hat{ i }-\hat{ j }-3 \hat{ k }$ are perpendicular to each other?

Explain the geometrical interpretation of scalar product of two vectors.

If $\vec{A}$ and $\vec{B}$ are two vectors satisfying the relation $\vec{A} . \vec{B}=[\vec{A} \times \vec{B}]$. Then the value of $[\vec{A}-\vec{B}]$. will be :

  • [JEE MAIN 2021]

Show that the scalar product of two vectors obeys the law of commutative.

Explain the kinds of multiplication operations for vectors.