$\hat i.\left( {\hat j \times \,\,\hat k} \right) + \;\,\hat j\,.\,\left( {\hat k \times \hat i} \right) + \hat k.\left( {\hat i \times \hat j} \right)=$
$0$
$1$
$2$
$3$
Explain the geometrical interpretation of scalar product of two vectors.
If $\vec{A}$ and $\vec{B}$ are two vectors satisfying the relation $\vec{A} . \vec{B}=[\vec{A} \times \vec{B}]$. Then the value of $[\vec{A}-\vec{B}]$. will be :
Show that the scalar product of two vectors obeys the law of commutative.
Explain the kinds of multiplication operations for vectors.