જો $a = r + r^2 + r^3 + …..+\infty$ હોય તો $r$ નું મૂલ્ય ....... છે.
$\frac{{\rm{a}}}{{{\rm{1}} - {\rm{a}}}}$
$\frac{{\rm{a}}}{{{\rm{a}} - {\rm{1}}}}$
$\frac{{\rm{a}}}{{{\rm{1}} + \,\,{\rm{a}}}}$
$\frac{{\rm{1}}}{{{\rm{1}} + {\rm{a}}}}$
જો ${s_n} = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ........ + \frac{1}{{{2^{n - 1}}}}$ ,હોય તો $n$ ની ન્યૂનતમ કિમત મેળવો કે જેથી $2 - {s_n} < \frac{1}{{100}}$ થાય
બે સંખ્યાઓનો સરવાળો તેમના સમગુણોત્તર મધ્યક કરતાં છ ગણો હોય, તો બતાવો કે સંખ્યાઓનો ગુણોત્તર $(3+2 \sqrt{2}):(3-2 \sqrt{2})$ થાય.
જો $x > 1,\;y > 1,z > 1$ એ સમગુણોતર શ્નેણીમાં હોયતો $\frac{1}{{1 + {\rm{In}}\,x}},\;\frac{1}{{1 + {\rm{In}}\,y}},$ $\;\frac{1}{{1 + {\rm{In}}\,z}}$ એ _______ માં છે.
જો સમગુણોત્તર શ્રેણીના ચાર ધન ક્રમિક પદોના સરવાળા તથા ગુણાકાર અનુક્રમે $126$ અને $1296$ હોય, તો આવી દરેક સમગુણોત્તર શ્રેણીનાં સામાન્ય ગુણોત્તરોનો સરવાળો $.............$ છે.
સમ ગુણોત્તર શ્રેણીના પ્રથમ બે પદનો સરવાળો $12$ છે. ત્રીજા અને ચોથા પદનો સરવાળો $48$ છે. ગુણોત્તર શ્રેણીના પદો ક્રમિક રીતે ઘન અને ઋણ છે. તો પ્રથમ પદ કયું હોય ?