ધારો કે $\alpha$ અને $\beta$ એ સમીકરણ $p x^2+q x-r=0$ નાં બીજ છે, જ્યાં $p \neq 0$.જે $p, q$ અને $r$ એ એક અચળ ન હોય તેવી ગુણોત્તર શ્રેણી ($G.P.$) ના ક્રમિક પદો હોય અને $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{4}$ હોય, તો $(\alpha-\beta)^2$ નું મૂલ્ય .............. છે.

  • [JEE MAIN 2024]
  • A

    $\frac{80}{9}$

  • B

    $9$

  • C

    $\frac{20}{3}$

  • D

    $8$

Similar Questions

આપેલ સમગુણોત્તર શ્રેણી માટે $a=729$ અને $7$ મું પદ $64$ હોય તો $S$, શોધો. 

જો સામાન્ય ગુણોત્તર $r (r>1)$ વાળી એક ગુણોત્તર શ્રેણી ($G.P.$) ના ત્રણ ક્રમિક પદો , એ એક ત્રિકોણની ત્રણ બાજુઓની લંબાઈઓ છે અને $[\mathrm{r}]$ એ $\mathrm{r}$ કે તેથી નાનો હોય તેવો મહત્તમ પૂણાંક દર્શાવે છે, તો $3[\mathrm{r}]+[-\mathrm{r}]=$___________. 

  • [JEE MAIN 2024]

જો ${A_n} = \left( {\frac{3}{4}} \right) - {\left( {\frac{3}{4}} \right)^2} + {\left( {\frac{3}{4}} \right)^3} - ..... + {\left( { - 1} \right)^{n - 1}}{\left( {\frac{3}{4}} \right)^n}$  અને $B_n \,= 1 - A_n$ હોય તો $p$ ની ન્યુનત્તમ અયુગ્મ કિમત મેળવો કે જેથી બધા $n \geq p$ ${B_n} > {A_n}$ માટે થાય 

  • [JEE MAIN 2018]

જો  $a_{1}, a_{2}, a_{3}, \ldots$ એ સમગુણોતર શ્રેણીમાં છે કે જેથી $a_{1}<0$ ; $a_{1}+a_{2}=4$ અને  $a_{3}+a_{4}=16.$ જો  $\sum\limits_{i=1}^{9} a_{i}=4 \lambda,$ તો $\lambda$ મેળવો.

  • [JEE MAIN 2020]

$\sqrt 3 \, + \,\frac{1}{{\sqrt 3 }}\, + \,\frac{1}{{3\sqrt 3 }}\, + \,.....\,$ શ્રેણીના પદોનો સરવાળો કેટલો થાય?