ધારો કે ચાર જુદી જુદી ધન સંખ્યાઓ $a_2$, $a_2$, $a_3$, $a_4$ સમગુણોત્તર શ્રેણીમાં છે. $b_1$ = $a_1$, $b_2$ = $b_1$ + $a_2$, $b_3$ = $b_2$ + $a_3$ અને $b_4$ = $b_3$ + $a_4$ લો.

વિધાન $- I$ : સંખ્યાઓ $b_1$, $b_2$, $b_3$, $b_4$ સમાંતર શ્રેણીમાં નથી કે સમગુણોત્તરમાં પણ નથી.

વિધાન $- II$ : સંખ્યાઓ $b_1$, $b_2$, $b_3$, $b_4$ સ્વરીત શ્રેણીમાં છે.

  • A

    વિધાન - $I$ સાચું છે, વિધાન - $II$ સાચું છે. વિધાન - $II$ એ વિધાન- $I$ ની સાચી સમજૂતી છે.

  • B

    વિધાન - $I$ સાચું છે, વિધાન - $II$ સાચું છે. વિધાન - $II$ એ વિધાન- $I$ ની સાચી સમજૂતી નથી.

  • C

    વિધાન - $I$ સાચું છે. વિધાન - $II$ ખોટું છે.

  • D

    વિધાન- $I$ ખોટું છે. વિધાન- $II$ સાચું છે.

Similar Questions

શ્રેણી $1, 2, 2^2, ….2^n$ નો ગુણોત્તર મધ્યક...... છે.

$\alpha$ અને $\beta$ એ સમીકરણ $x^{2}-3 x+p=0$ ના બીજો હોય તથા $\gamma$ અને $\delta$ એ સમીકરણ $x^{2}-6 x+q=0$ ના બીજો છે. જો $\alpha$ $\beta, \gamma, \delta$ એ સમગુણોત્તર શ્રેણીમાં હોય તો $(2 q+p):(2 q-p)$ મેળવો 

  • [JEE MAIN 2020]

ધારો કે $\alpha$ અને $\beta$ એ સમીકરણ $p x^2+q x-r=0$ નાં બીજ છે, જ્યાં $p \neq 0$.જે $p, q$ અને $r$ એ એક અચળ ન હોય તેવી ગુણોત્તર શ્રેણી ($G.P.$) ના ક્રમિક પદો હોય અને $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{4}$ હોય, તો $(\alpha-\beta)^2$ નું મૂલ્ય .............. છે.

  • [JEE MAIN 2024]

જો સમગુણોતર શ્નેણીના $n$ પદેાનો સરવાળો $S$ અને ગુણાકાર $P$ અને તેમના વ્યસ્તનેા સરવાળો $R$ હોય તો ${P^2}$= ?

  • [IIT 1966]

જો $\sum\limits_{{\text{r}}\, = \,{\text{1}}}^\infty  {\frac{1}{{{{(2r\, - \,1)}^2}}}\,\, = \,\,\frac{{{\pi ^2}}}{8}} $ હોય, તો $\,\sum\limits_{{\text{r}}\, = \,{\text{1}}}^\infty  {\frac{1}{{{r^2}}}\,\, = \,\,.........} $