English
Hindi
8. Sequences and Series
medium

જો $S_1, S_2$ અને $S_3$ અનુક્રમે સમાંતર શ્રેણીના પ્રથમ $n_1, n_2$ અને $n_3$ પદોના સરવાળા દર્શાવે તો, $\frac{{{S_1}}}{{{n_1}}}\,({n_2}\, - \,{n_3})\,\, + \,\,\frac{{{S_2}}}{{{n_2}}}\,({n_3}\, - \,{n_1})\,\, + \,\,\frac{{{S_3}}}{{{n_3}}}\,({n_1}\, - \,{n_2})\,\, = ....$

A

$0$

B

$1$

C

$S_1S_2S_3$

D

$n_1n_2n_3$

Solution

અહીં $\,{{\text{S}}_{\text{1}}}\, = \,\frac{{{n_1}}}{2}\,[2a\, + \,({n_1}\, – \,1)\,d]\,$

$ \Rightarrow \,\frac{{2{S_1}}}{{{n_1}}}\, = \,2a\,({n_1}\, – \,1)d$

${S_2}\, = \,\frac{{{n_2}}}{2}\,[2a\, + \,({n_2}\, – \,1)\,d$

$ \Rightarrow \,\frac{{2{S_2}}}{{{n_2}}}\, = \,2a\, + \,({n_2}\, – \,1)\,d$

${S_3}\, = \,\frac{{{n_3}}}{2}\,[2a\, + \,({n_3}\, – \,1)d]\,$

$ \Rightarrow \,\frac{{2{S_3}}}{{{n_3}}}\, = \,2a\,({n_3} – \,1)\,d$

$\therefore \,\frac{{2{S_1}}}{{{n_1}}}\,({n_2}\, – \,{n_3})\, + \,\frac{{2{S_2}}}{{{n_2}}}\,({n_3} – {n_1})\, + \,\frac{{2{S_3}}}{{{n_3}}}\,({n_1}\, – \,{n_2})$

${\text{ =  [2a  +  (}}{{\text{n}}_{\text{1}}}{\text{  –  1) d] (}}{{\text{n}}_{\text{2}}}{\text{  –  }}{{\text{n}}_{\text{3}}}{\text{)  +  [2a  +  (}}{{\text{n}}_{\text{2}}}{\text{  –  1)d] (}}{{\text{n}}_{\text{3}}}{\text{  –  }}{{\text{n}}_{\text{1}}}{\text{)}}$

${\text{ +  [2a  +  (}}{{\text{n}}_{\text{3}}}{\text{  –  1)d] (}}{{\text{n}}_{\text{1}}}{\text{  –  }}{{\text{n}}_{\text{2}}}{\text{)  =  0}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.