જો $S_1, S_2$ અને $S_3$ અનુક્રમે સમાંતર શ્રેણીના પ્રથમ $n_1, n_2$ અને $n_3$ પદોના સરવાળા દર્શાવે તો, $\frac{{{S_1}}}{{{n_1}}}\,({n_2}\, - \,{n_3})\,\, + \,\,\frac{{{S_2}}}{{{n_2}}}\,({n_3}\, - \,{n_1})\,\, + \,\,\frac{{{S_3}}}{{{n_3}}}\,({n_1}\, - \,{n_2})\,\, = ....$

  • A

    $0$

  • B

    $1$

  • C

    $S_1S_2S_3$

  • D

    $n_1n_2n_3$

Similar Questions

${a_1},{a_2},.......,{a_{30}}$ એ સમાંતર શ્રેણીમાં છે. $S = \sum\limits_{i = 1}^{30} {{a_i}} $ અને $T = \sum\limits_{i = 1}^{15} {{a_{2i - 1}}} $. જો  ${a_5} = 27$ અને $S - 2T = 75$ , તો $a_{10}$ મેળવો.

  • [JEE MAIN 2019]

જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=\frac{n}{n+1}$

$8$ અને $26$ વચ્ચે $5$ સંખ્યાઓ ઉમેરો  કે જેથી બનતી શ્રેણી સમાંતર શ્રેણી બને. 

સમાંતર શ્રેણીના પ્રથમ $p$ પદોનો સરવાળો, પ્રથમ $q$ પદોના સરવાળા જેટલો થાય છે, તો પ્રથમ $(p+q)$ પદોનો સરવાળો શોધો. 

નીચેની ત્રણ સમાંતર શ્રેણીઓ

$3,7,11,15,...................,399$

$2,5,8,11,............,359$ અને

$2,7,12,17,...........,197$,

ના સામાન્ય પદોનો સરવાળો $.....$ છે.

  • [JEE MAIN 2023]