$100$ અને $1000$ વચ્ચેની $5$ ની ગુણિત પ્રાકૃતિક સંખ્યાઓનો સરવાળો શોધો.
The natural numbers lying between $100$ and $1000 ,$ which are multiples of $5,$ are $105,110,.......$ $995$
Here, $a=105$ and $d=5$
Here, $a=105$ and $d=5$
$a+(n-1) d=995$
$\Rightarrow 105+(n-1) 5=995$
$\Rightarrow(n-1) 5=995-105=890$
$\Rightarrow n-1=178$
$\Rightarrow n=179$
$\therefore S_{n}=\frac{179}{2}[2(105)+(179-1)(5)]$
$=\frac{179}{2}[2(105)+(178)(5)]$
$=179[105+(89) 5]$
$=179(105+445)$
$=(179)(550)$
$=98450$
Thus, the sum of all natural numbers lying between 100 and $1000,$ which are multiples of $5,$ $98450$
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=2^{n}$
આપેલ સમાંતર શ્રેણીમાં બધા પદો ધન પૂર્ણાંક સંખ્યા છે તથા પહેલા નવ પદોનો સરવાળો $200$ કરતાં વધારે અને $220$ કરતાં ઓછો છે. જો શ્રેણીનું બીજું પદ $12$ હોય તો ચોથું પદ મેળવો.
$1, 2, 4, 8, 16, .......2^n $ શ્રેણીનો સમાંતર મધ્યક :
જો $x,y,z$ સમાંતર શ્રેણીમાં હોય અને ${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$ અને ${\tan ^{ - 1}}z$ પણ કોઇ સમાંતર શ્રેણીમાં હોય તો
જો સમાંતર શ્રેણી નું $p$ મું, $q$ મું , $r$ મું પદ અનુક્રમે $1/a, 1/b, 1/c$ હોય તો $ab(p - q) + bc(q - r) + ca(r - p) = …….$