$100$ અને $1000$ વચ્ચેની $5$ ની ગુણિત પ્રાકૃતિક સંખ્યાઓનો સરવાળો શોધો.
The natural numbers lying between $100$ and $1000 ,$ which are multiples of $5,$ are $105,110,.......$ $995$
Here, $a=105$ and $d=5$
Here, $a=105$ and $d=5$
$a+(n-1) d=995$
$\Rightarrow 105+(n-1) 5=995$
$\Rightarrow(n-1) 5=995-105=890$
$\Rightarrow n-1=178$
$\Rightarrow n=179$
$\therefore S_{n}=\frac{179}{2}[2(105)+(179-1)(5)]$
$=\frac{179}{2}[2(105)+(178)(5)]$
$=179[105+(89) 5]$
$=179(105+445)$
$=(179)(550)$
$=98450$
Thus, the sum of all natural numbers lying between 100 and $1000,$ which are multiples of $5,$ $98450$
જો $^n{C_4},{\,^n}{C_5},$ અને ${\,^n}{C_6},$ એ સમાંતર શ્રેણીમાં હોય તો $n$ મેળવો.
જેને $4$ વડે ભાગતાં શેષ $1$ વધે તેવી બે આંકડાની સંખ્યાઓનો સરવાળો શોધો.
જો એક સમાંતર શ્રેણી $a_{1} a_{2}, a_{3}, \ldots$ ના પ્રથમ $11$ પદોનો સરવાળો $0\left(\mathrm{a}_{1} \neq 0\right)$ થાય અને સમાંતર શ્રેણી $a_{1}, a_{3}, a_{5}, \ldots, a_{23}$ પદોનો સરવાળો $k a_{1}$ થાય તો $k$ ની કિમત મેળવો
જો સમાંતર શ્રેણીનું $19^{th}$ પદ શૂન્ય થાય તો ($49^{th}$ મુ પદ) : ($29^{th}$ મુ પદ) મેળવો,
જો $a$ અને $b$ વચ્ચેનો સમાંતર મધ્યક $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ ન હોય, તો $n$ નું મૂલ્ય શોધો.