પાંચ સંખ્યાઓ સમાંતર શ્રેણીમાં છે કે જેનો સરવાળો $25$ થાય અને ગુણાકાર $2520 $ થાય. જો પાંચ પૈકી કોઈ એક સંખ્યા $-\frac{1}{2},$ હોય તો તેમાથી મહતમ સંખ્યા મેળવો.
$\frac{21}{2}$
$27$
$16$
$7$
$p , q \in R$ માટે, વાસ્તવિક વિધેય $f(x)=(x- p )^{2}- q , x \in R$ અને $q >0$ ધ્યાનેન લો. ધારોકે $a _{1}, a _{2}, a _{3}$ અને $a _{4}$ એ સમાંતર શ્રેણીમાં છે તથા તેનો મધ્યક $p$ અને સામાન્ય તફાવત ધન છે. જો પ્રત્યેક $i=1,2,3,4$ માટે $\left|f\left( a _{i}\right)\right|=500$, તો $f(x)=0$ નાં બીજો વચ્ચેનો નિરપેક્ષ તફાવત ............ છે.
જો કોઈ સમાંતર શ્રેણીના પ્રથમ $n$ પદોનો સરવાળો $cn(n -1)$ , જ્યાં $c \neq 0$ , હોય તો આ પદોના વર્ગોનો સરવાળો મેળવો
જો $p,\;q,\;r$ ધન તેમજ સંમાતર શ્નેણીમાં હોય તો કઇ શરત માટે પ્રતિઘાત સમીકરણ $p{x^2} + qx + r = 0$ નાં બિજ વાસ્તવિક બને..
એક માણસ વાર્ષિક $5\%$ ના સાદા વ્યાજે બેંકમાં $Rs.$ $10,000$ જમા કરાવે છે, તો તેણે જમા કરાવેલ રકમથી $15$ માં વર્ષમાં જમા રકમ અને $20$ વર્ષ પછીની કુલ રકમ શોધો.
સમાંતર શ્રેણી $3,8,13, \ldots, 373$ માં $3$ વડે વિભાજય ન હોય તેવા તમામ પદોનો સરવાળો $..........$ છે.