$( - \pi ,\,\,\pi )\,\,$ આંતરલમાં સમીકરણ $\,{{\rm{(8)}}^{{\rm{(1}}\, + \,{\rm{|cosx|}}\, + \,|{\rm{co}}{{\rm{s}}^{\rm{2}}}{\rm{x| }} + {\rm{ |co}}{{\rm{s}}^{\rm{3}}}{\rm{x|}}\, + ......{\rm{)}}}}\,\, = \,\,{4^3}$ નો ઉકેલ ક્યો છે ?
$ \pm \,\frac{\pi }{3},\, \pm \,\frac{\pi }{6}$
$ \pm \frac{\pi }{3},\, \pm \,\pi $
$ \pm \frac{\pi }{3},\, \pm \,\frac{{2\pi }}{3}$
આપેલ પૈકી એક પણ નહિ
જો $(y - x), 2(y - a)$ અને $(y - z)$ સ્વરીત શ્રેણીમાં હોય તો $x -a, y -a, z - a …..$ શ્રેણીમાં છે.
સમગુણોત્તર શ્રેણી $5,25,125, \ldots$ માટે $10$ મું પદ અને $n$ મું પદ શોધો.
જો $a, b, c$, અને $ p$ ભિન્ન વાસ્તવિક સંખ્યાઓ હોય અને $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right)\, \leq \,0,$ તો બતાવો કે $a, b, c$ અને $d$ સમગુણોત્તર શ્રેણીમાં છે.
જેનું પ્રથમ પદ $n ^{2}$ અને સામાન્ય ગુણોત્તર $\frac{1}{( n +1)^{2}}$ હોય તેવી અનંત સમગુણોતર શ્રેણીનો સરવાળો ધારો કે $S _{ n }$ છે, જ્યાં $n =1,2, \ldots \ldots, 50$ તો, $\frac{1}{26}+\sum_{ n =1}^{50}\left( S _{ n }+\frac{2}{ n +1}- n -1\right)$ ની કીમત................છે
ધારોકે $a_1, a_2, a_3, \ldots .$. વધતી ધન સંખ્યાઓ ની સમગુણોત્તર શ્રેણી છે.ધારોકે તેના છઠા અને $8$મા પદોનો સરવાળો $2$ છે તથા તેના ત્રીજા અને $5$મા પદોનો ગુણાકાર $\frac{1}{9}$ છે.તો $6\left(a_2+a_4\right)\left(a_4+a_6\right)=.....$