જો $a, b, c$, અને $ p$ ભિન્ન વાસ્તવિક સંખ્યાઓ હોય અને $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right)\, \leq \,0,$ તો બતાવો કે $a, b, c$ અને $d$ સમગુણોત્તર શ્રેણીમાં છે.
Given that
$\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \,\leq \,0$ .........$(1)$
But $L.H.S.$
$=\left(a^{2} p^{2}-2 a b p+b^{2}\right)+\left(b^{2} p^{2}-2 b c p+c^{2}\right)+\left(c^{2} p^{2}-2 c d p+d^{2}\right)$
which gives $(a p-b)^{2}+(b p-c)^{2}+(c p-d)^{2}\, \geq \,0$ ..........$(2)$
Since the sum of squares of real numbers is non negative, therefore, from $(1)$ and $(2),$
we have, $(a p-b)^{2}+(b p-c)^{2}+(c p-d)^{2}=0$
or $a p-b=0, b p-c=0, c p-d=0$
This implies that $\frac{b}{a}=\frac{c}{b}=\frac{d}{c}=p$
Hence $a, b, c$ and $d$ are in $G.P.$
$0.\mathop {423}\limits^{\,\,\,\, \bullet \,\,\, \bullet \,} = $
એક સમગુણોત્તર શ્રેણીનું ત્રીજું પદ $24$ અને છઠું પદ $192$ છે તો તેનું $10$ મું પદ શોધો.
$7, 7^2, 7^3, ….7^n $ નો સમગુણોત્તર મધ્યક ..... છે.
સમગુણોત્તર શ્રેણીનું પ્રથમ પદ $a$ અને $n$ મું પદ છે. જો $n$ પદોનો ગુણાકાર $P$ હોય, તો સાબિત કરો કે $P^{2}=(a b)^{n}$