English
Hindi
8. Sequences and Series
medium

સમાંતર શ્રેણીનું $r$ મું પદ $Tr$ છે. તેનું પ્રથમ પદ $a$ અને સામાન્ય તફાવત $d$ છે. જો કેટલાક ધન પૂર્ણાકો $m, n, m \neq  n,$ માટે $T_m = 1/n$ અને $T_n = 1/m,$ હોય તો $a - d = …….$

A

$0$

B

$1$

C

$1/mn$

D

$1/m + 1/n$

Solution

${{T}_{n}}\,\,=\,\,a+(n-1)d,$  ${{T}_{m}}\,\,=\,\,a+(m-1)d$

$\frac{1}{m}\,\,=\,\,a+(n-1)d,$    $\frac{1}{n}\,\,=\,\,a+(m-1)d$

$\therefore 1\,\,=\,\,am+mnd-md,\,$   $1\,\,=\,\,an\,\,+mnd\,\,-\,\,nd\,$

$\therefore \,\,\,\,am\,\,+\,mnd-md\,\,=\,\,an+mnd-nd$

$\therefore \,a(m-n)\,\,=\,\,(m-n)d$

$\therefore \,\,\,\,a\,\,=\,\,d$ $\,(\because \,m-n\ne \,\,0)\,\,$

$\therefore \,\,\,\,a-d\,\,=\,\,0$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.