જો $S_n$ એ સમાંતર શ્રેણીના પ્રથમ $n$ પદનો સરવાળો દર્શાવે છે અને $S_4 = 16$ અને $S_6 = -48$, હોય તો $S_{10}$ મેળવો.
$-410$
$-260$
$-320$
$-380$
એક ખેડૂત પુન:વેચાણનું ટ્રેક્ટર $Rs$ $12,000 $ માં ખરીદે છે. તે $Rs$ $ 6000$ રોકડા ચૂકવે છે અને બાકીની રકમ $Rs$ $500$ ના વાર્ષિક હપતામાં અને $12 \%$ વ્યાજે ચૂકવે છે, તો તેણે ટ્રેક્ટરની શું કિંમત ચૂકવી હશે?
$a_1$, $a_2$, $a_3$, ......., $a_{100}$ સમાંતર શ્રેણીમાં છે. જ્યાં $a_1 = 3$ અને ${S_p}\, = \,\sum\limits_{i\, = \,1}^p {{a_i},\,1\,\, \le \,\,p\,\, \le \,\,100.} $ છે. કોઈ પણ પૂર્ણાક $n$ માટે $m = 5n$ લો. જો $S_m/S_n$ એ $n$ ઉપર આધારીત ન હોય તો $a_2= ......$
$7$ અને $71$ વચ્ચે $n$ સમાંતર મધ્યકો આવેલા છે. જો $5$ મો સમાંતર મધ્યક $27$ હોય તો $n=......$
જો સમીકરણ $x^3 - 12x^2 + 39x - 28 = 0$ ના બીજ સમાંતર શ્રેણી હોય તો તેનો સામાન્ય તફાવત કેટલો હોય ?
જો ${\left( {1 - 2x + 3{x^2}} \right)^{10x}} = {a_0} + {a_1}x + {a_2}{x^2} + .....+{a_n}{x^n},{a_n} \ne 0$, હોય તો $a_0,a_1,a_2,...a_n$ નો સમાંતર મધ્યક મેળવો.