સમાંતર શ્રેણીનાં ત્રણ ક્રમિક પદ પૈકી પ્રથમ પદ અને તૃતીય પદનો સરવાળો $12$ છે તથા પ્રથમ પદ અને દ્વિતીય પદનો ગુણાકાર $ 24$ છે, તો પ્રથમ પદ..... હશે.
$1$
$4$
$6$
$8$
જો સમીકરણ $a{x^2} + bx + c = 0$ ના બીજનો સરવાળો એ બીજના વર્ગના વ્યસ્તના સરવાળા બરાબર હોય તો $b{c^2},\;c{a^2},\;a{b^2}$ એ . . . . શ્રેણીમાં છે .
જો $a, b$ અને $c$ એ સમાંતર શ્રેણીનાં અનુક્રમે પ્રથમ, દ્વિતીય અને અંતિમ પદ હોય, તો આ પદની કુલ સંખ્યા...... છે.
પ્રથમ ત્રણ પદો લખો : $a_{n}=\frac{n-3}{4}$
કોઇપણ ત્રણ ધન વાસ્તવિક સંખ્યાઓ $a,b,c$ માટે $9\left( {25{a^2} + {b^2}} \right) + 25\left( {{c^2} - 3ac} \right) = 15b\left( {3a + c} \right)$તો:
$1.3.5, 3.5.7, 5.7.9, ...... $ શ્રેણીના પ્રથમ $n$ પદોનો સમાંતર મધ્યક કેટલો થાય ?