$1$ થી $2001$ સુધીના અયુગ્મ પૂર્ણાકોનો સરવાળો શોધો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The odd integers from $1$ to $2001$ are $1,3,5 \ldots \ldots .1999,2001$

This sequence forms an $A.P.$

Here, first term, $a=1$

Common difference, $d=2$

Here, $a+(n-1) d=2001$

$\Rightarrow 1+(n-1)(2)=2001$

$\Rightarrow 2 n-2=2000$

$\Rightarrow n=1001$

$S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$\therefore S_{n}=\frac{1001}{2}[2 \times 1+(1001-1) \times 2]$

$=\frac{1001}{2}[2+1000 \times 2]$

$=1001 \times 1001$

$=1002001$

Thus, the sum of odd numbers from $1$ to $2001$ is $1002001 .$

Similar Questions

સમગુણોત્તર શ્રેણીના કેટલાક પદોનો સરવાળો $728$ છે, જો સામાન્ય ગુણોત્તર $3$ હોય અને છેલ્લું પદ $486$ તો શ્રેણીનું પહેલું પદ શું હોય?

જો સમાંતર શ્રેણીનું $10^{\text {th }}$ મુ પદ $\frac{1}{20}$ અને તેનું $20^{\text {th }}$ મુ પદ $\frac{1}{10},$ હોય તો પ્રથમ  $200$ પદોનો સરવાળો મેળવો.

  • [JEE MAIN 2020]

${S_1},{S_2},......,{S_{101}}$ એ કોઈ સમાંતર શ્રેણીના ક્રમિક પદો છે જો $\frac{1}{{{S_1}{S_2}}} + \frac{1}{{{S_2}{S_3}}} + .... + \frac{1}{{{S_{100}}{S_{101}}}} = \frac{1}{6}$ અને ${S_1} + {S_{101}} = 50$ ,હોય તો $\left| {{S_1} - {S_{101}}} \right|$ ની કિમત મેળવો 

આપેલ શ્રેણીનાં પ્રથમ પાંચ પદ શોધો અને સંબંધિત શ્રેઢી મેળવો : $a_{1}=3, a_{n}=3 a_{n-1}+2$ માટે $n\,>\,1$

$a_1$, $a_2$, $a_3$, ......., $a_{100}$ સમાંતર શ્રેણીમાં છે. જ્યાં $a_1 = 3$ અને ${S_p}\, = \,\sum\limits_{i\, = \,1}^p {{a_i},\,1\,\, \le \,\,p\,\, \le \,\,100.} $ છે. કોઈ પણ પૂર્ણાક $n$ માટે $m = 5n$ લો. જો $S_m/S_n$ એ $n$ ઉપર આધારીત ન હોય તો $a_2= ......$