$1$ થી $2001$ સુધીના અયુગ્મ પૂર્ણાકોનો સરવાળો શોધો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The odd integers from $1$ to $2001$ are $1,3,5 \ldots \ldots .1999,2001$

This sequence forms an $A.P.$

Here, first term, $a=1$

Common difference, $d=2$

Here, $a+(n-1) d=2001$

$\Rightarrow 1+(n-1)(2)=2001$

$\Rightarrow 2 n-2=2000$

$\Rightarrow n=1001$

$S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$\therefore S_{n}=\frac{1001}{2}[2 \times 1+(1001-1) \times 2]$

$=\frac{1001}{2}[2+1000 \times 2]$

$=1001 \times 1001$

$=1002001$

Thus, the sum of odd numbers from $1$ to $2001$ is $1002001 .$

Similar Questions

${a_1},{a_2},.......,{a_{30}}$ એ સમાંતર શ્રેણીમાં છે. $S = \sum\limits_{i = 1}^{30} {{a_i}} $ અને $T = \sum\limits_{i = 1}^{15} {{a_{2i - 1}}} $. જો  ${a_5} = 27$ અને $S - 2T = 75$ , તો $a_{10}$ મેળવો.

  • [JEE MAIN 2019]

એક વેપારી ગણતરી કરે છે કે એક મશીન તેને $Rs$ $15,625$ માં મળે છે અને દર વર્ષે તેનો ઘસારો $20\ %$ છે, તો પાંચ વર્ષ પછી આ મશીનની અંદાજિત કિંમત કેટલી હશે ? 

એક માણસ તેની નોકરીના પ્રથમ ત્રણ મહિનામાં $200$ રૂપિયાની બચત કરે છે. તે પછીના મહિનામાં તેની બચત પહેલાંના મહિના કરતાં $40$ રૂપિયા છે. નોકરીની શરૂઆતથી કેટલા ................. મહિના પછી તેની કુલ બચત $11040$ રૂપિયા થશે ?

જો $a^{1/x} = b^{1/y} = c^{1/z}$ અને $a, b, c$ સમગુણોત્તર શ્રેણીમાં હોય, તો $x, y$ અને $z$ એ.....

જો $\tan \left(\frac{\pi}{9}\right), x, \tan \left(\frac{7 \pi}{18}\right)$ એ સમાંતર શ્રેણીમાં છે અને $\tan \left(\frac{\pi}{9}\right), y, \tan \left(\frac{5 \pi}{18}\right)$ એ પણ સમાંતર શ્રેણીમાં  હોય તો $|x-2 y|$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]