$1$ થી $2001$ સુધીના અયુગ્મ પૂર્ણાકોનો સરવાળો શોધો.
The odd integers from $1$ to $2001$ are $1,3,5 \ldots \ldots .1999,2001$
This sequence forms an $A.P.$
Here, first term, $a=1$
Common difference, $d=2$
Here, $a+(n-1) d=2001$
$\Rightarrow 1+(n-1)(2)=2001$
$\Rightarrow 2 n-2=2000$
$\Rightarrow n=1001$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\therefore S_{n}=\frac{1001}{2}[2 \times 1+(1001-1) \times 2]$
$=\frac{1001}{2}[2+1000 \times 2]$
$=1001 \times 1001$
$=1002001$
Thus, the sum of odd numbers from $1$ to $2001$ is $1002001 .$
ધારો કે $A =\left\{1, a _{1}, a _{2} \ldots \ldots a _{18}, 77\right\}$ પૂર્ણકોનો ગણ છે જ્યાં $1< a _{1}< a _{2}<\ldots \ldots< a _{18}<77$. ધરો કે ગણ $A + A =\{ x + y : x , y \in A \} \quad$ બરાબર $39$ ઘટકો સમાવે છે તો $a_{1}+a_{2}+\ldots \ldots+a_{18}$ નું મૂલ્ય.................. છે
એક સમાંતર શ્રેણીનાં પ્રથમ $m$ અને $n$ પદોના સરવાળાના ગુણોત્તર $m^{2}: n^{2}$ છે. સાબિત કરો કે $m$ માં તથા $n$ માં પદોનો ગુણોત્તર $(2 m-1):(2 n-1)$ થાય.
જો $\frac{1}{{b\, + \,c}},\,\frac{1}{{c\, + \,a}},\,\frac{1}{{a\, + \,b}}$ સમાંતર શ્રેણીમાં હોય, તો $a^2, b^2, c^2$ કઈ શ્રેણીમાં હશે ?
જો $a, b$ અને $c$ એ સમાંતર શ્રેણીનાં અનુક્રમે પ્રથમ, દ્વિતીય અને અંતિમ પદ હોય, તો આ પદની કુલ સંખ્યા...... છે.