જો અશૂન્ય સામાન્ય તફાવત સાથે સમાંતર શ્રેણીના $100$ માં પદના $100$ ગણા એ તેના $50$ માં પદના $50$ ગણા બરાબર હોય, તો તેનું $150$ મું પદ કયું હોય ?
$0$
$-150$
તેના $50$ માં પદના $150$ ગણું
$150$
જો $x=\sum \limits_{n=0}^{\infty} a^{n}, y=\sum\limits_{n=0}^{\infty} b^{n}, z=\sum\limits_{n=0}^{\infty} c^{n}$, જ્યાં $a , b , c$ એ સમાંતર શ્રેણી$(A.P.)$ માં છે. $|a| < 1,|b| < 1,|c| < 1$, $abc$ $\neq 0$ તો:
જો કોઈ સમાંતર શ્રેણીના ત્રણ પદોનો સરવાળો અને ગુણાકાર અનુક્રમે $33$ અને $1155$ થાય તો આ સમાંતર શ્રેણીના $11^{th}$ માં પદની કિમત મેળવો.
જો $log2, log (2^x - 1)$ અને $log (2^x + 3)$ સમાંતર શ્રેણીમાં હોય તો $x$ નું મૂલ્ય....... છે.
$p , q \in R$ માટે, વાસ્તવિક વિધેય $f(x)=(x- p )^{2}- q , x \in R$ અને $q >0$ ધ્યાનેન લો. ધારોકે $a _{1}, a _{2}, a _{3}$ અને $a _{4}$ એ સમાંતર શ્રેણીમાં છે તથા તેનો મધ્યક $p$ અને સામાન્ય તફાવત ધન છે. જો પ્રત્યેક $i=1,2,3,4$ માટે $\left|f\left( a _{i}\right)\right|=500$, તો $f(x)=0$ નાં બીજો વચ્ચેનો નિરપેક્ષ તફાવત ............ છે.
સમાંતર શ્રેણીના $p$ માં પદના $p$ ગણા અને $q$ મા પદના $q$ ગણા એ બંને સમાન હોય, તો આ શ્રેણીનું $(p + q)$ મું પદ........ છે.