એક સમાંતર શ્રેણીનું પ્રથમ પદ $2$ છે અને પ્રથમ પાંચ પદોનો સરવાળો પછીનાં પાંચ પદના સરવાળાના એક ચતુર્થાંશ ભાગનો છે. તો સાબિત કરો કે $20$ મું પદ $- 122$ છે.
First term $=2$
Let d be the common different of the $A.P.$
Therefore, the $A.P.$ is $2,2+d, 2+2 d, 2+3 d \ldots$
Sum of first five terms $=10+10 d$
Sum of next five terms $=10+35 d$
According to the given condition,
$10+10 d=\frac{1}{4}(10+35 d)$
$\Rightarrow 40+40 d=10+35 d$
$\Rightarrow 30=-5 d$
$\Rightarrow d=-6$
$\therefore a_{20}=a+(20-1) d=2+(19)(-6)=2-114=-112$
Thus, the $20^{\text {th }}$ of the $A.P.$ is $-112$
એક માણસ તેની નોકરીના પ્રથમ ત્રણ મહિનામાં $200$ રૂપિયાની બચત કરે છે. તે પછીના મહિનામાં તેની બચત પહેલાંના મહિના કરતાં $40$ રૂપિયા છે. નોકરીની શરૂઆતથી કેટલા ................. મહિના પછી તેની કુલ બચત $11040$ રૂપિયા થશે ?
$\Delta {\text{ABC}}$ માટે $a\,\,{\cos ^2}\frac{C}{2} + c\,\,{\cos ^2}\frac{A}{2}\,\, = \,\,\frac{{3b}}{2}$ તો બાજુ એ ${\text{a, b, c }}......$
ધારોકે $a, b, c$ સમાંતર શ્રેણીમાં છે. ધારો કે $(a, c), (2, b)$ અને $(a, b)$ શિરોબિંદુવાળા ત્રિકોણનું મધ્યકેન્દ્ર $\left(\frac{10}{3}, \frac{7}{3}\right)$ છે. જો સમીકરણ $ax ^{2}+ bx +1=0$ નાં બીજ $\alpha, \beta$ હોય, તો $\alpha^{2}+\beta^{2}-\alpha \beta$ નું મૂલ્ય ....... છે.
વિધાન- I : બે સમાંતર શ્રેણીના $n$ પદોનો સરવાળો ગુણોત્તર $(7n + 1) : (4n + 17)$ હોય, તો તેમના $n$ માં પદોનો ગુણાકાર $7 : 4$ થાય.વિધાન- II : જો $S_n = an^2 + bn + c,$ હોય, તો $T_n = S_n - S_{n-1}$ થાય.
અહી $S_{n}$ એ સમાંતર શ્રેણીના $n$- નો સરવાળો દર્શાવે છે. જો $S_{10}=530, S_{5}=140$ તો $\mathrm{S}_{20}-\mathrm{S}_{6}$ ની કિમંત મેળવો.