એક સમાંતર શ્રેણીનું પ્રથમ પદ $2$ છે અને પ્રથમ પાંચ પદોનો સરવાળો પછીનાં પાંચ પદના સરવાળાના એક ચતુર્થાંશ ભાગનો છે. તો સાબિત કરો કે $20$ મું પદ $- 122$ છે.
First term $=2$
Let d be the common different of the $A.P.$
Therefore, the $A.P.$ is $2,2+d, 2+2 d, 2+3 d \ldots$
Sum of first five terms $=10+10 d$
Sum of next five terms $=10+35 d$
According to the given condition,
$10+10 d=\frac{1}{4}(10+35 d)$
$\Rightarrow 40+40 d=10+35 d$
$\Rightarrow 30=-5 d$
$\Rightarrow d=-6$
$\therefore a_{20}=a+(20-1) d=2+(19)(-6)=2-114=-112$
Thus, the $20^{\text {th }}$ of the $A.P.$ is $-112$
એક સમાંતર શ્રેણીનાં પ્રથમ $p, q$ અને $r$ પદોના સરવાળા અનુક્રમે $a, b$ અને $c$ છે. સાબિત કરો કે $\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
જો $a, b, c,d$, તે સમગુણોત્તર શ્રેણીમાં હોય, અને જો $a$ અને $b$ $x^{2}-3 x+p=0$ ના બીજ હોય અને $c, d$ $x^{2}-12 x+q=0$ ના બીજ હોય તો સાબિત કરો કે $(q+p):(q-p)=17: 15$
$x \geqslant 0$ માટે $4^{1+x}+4^{1-x}, \frac{\mathrm{K}}{2}, 16^x+16^{-x}$ એ એક સમાંતર શ્રેણીનાં ત્રણ ક્રમિક પદો હોય, તો $\mathrm{K}$ નું ન્યૂનતમ મૂલ્ય ........... છે.
સમાંતર શ્રેણીના પદો ${{\text{a}}_{\text{1}}}\text{, }{{\text{a}}_{\text{2}}}\text{, }{{\text{a}}_{\text{3}}}\text{, }......\text{ }$ લો. જો $\frac{{{a}_{1}}\,+\,\,{{a}_{2}}\,+\,....\,+\,\,{{a}_{p}}}{{{a}_{1}}\,+\,\,{{a}_{2}}\,+\,....\,+\,\,{{a}_{q}}}$ $=\,\frac{{{p}^{2}}}{{{q}^{2}}},\,p\,\,\ne \,\,q$ હોય,તો $\,\frac{{{a}_{6}}}{{{a}_{21}}}\,\,=\,\,.......$
ધારો કે $3,7,11,15, \ldots, 403$ અને $2, 5, 8, 11, .,. 404$ એ બે સમાંતર શ્રેણીઓ છે. તો તેમાંના સામાન્ય પદોનો સરવાળો...................... છે.