એક વ્યક્તિના પ્રથમ વર્ષની આવક $Rs. \,3,00,000$ છે. તેની આવકમાં પછીનાં $19$ વર્ષ સુધી પ્રતિ વર્ષ $Rs.\,10,000$ નો વધારો થાય છે. તો તે $20$ વર્ષમાં કુલ કેટલી રકમ મેળવશે ?
Here, we have an $\mathrm{A.P.}$ with $a=3,00,000, d=10,000,$ and $n=20$ Using the sum formula, we get,
$S_{20}=\frac{20}{2}[600000+19 \times 10000]=10(790000)=79,00,000$
Hence, the person received $Rs.\, 79,00,000$ as the total amount at the end of $20$ years.
જો $a, b$ અને $c$ એવા ત્રણ ધન સંખ્યા છે કે જે સમાંતર શ્રેણીમાં છે અને $abc\, = 8$ થાય તો $b$ ની ન્યૂનતમ કિમત મેળવો.
અલગ અલગ સમાંતર શ્રેણી કે જેનું પ્રથમ પદ $100$ અને અંતિમ પદ $199$ છે અને સમાન્ય તફાવત પૂર્ણાંક છે. જો આવી સમાંતર શ્રેણીના બધાજ સામાન્ય તફાવતનો સરવાળો મેળવો કે જેમાં ઓછામાં ઓછા $3$ પદો હોય અને વધુમાં વધુ $33$ પદો હોય.
જે સમાંતર શ્રેણીનું $k$ મું પદ $5k + 1$ હોય તેના પ્રથમ પદનો સરવાળો શોધો.
જો એક બહુકોણના બધા આંતરિક ખૂણાઓ સમાંતર શ્રેણીમાં હોય અને તેમની વચ્ચેનો સામાન્ય તફાવત $10^o$ હોય તો ન્યૂનતમ ખૂણો મેળવો
સમાંતર શ્રેણીના પ્રથમ $n$ પદોનો સરવાળો $2n + 3n^2$ છે અને નવી સમાંતર શ્રેણી બનાવમાં આવે છે કે જેમાં પ્રથમ પદ સમાન હોય અને સામાન્ય તફાવત બમણો હોય તો નવી શ્રેણીના $n$ પદનો સરવાળો મેળવો.