એક વ્યક્તિના પ્રથમ વર્ષની આવક $Rs. \,3,00,000$ છે. તેની આવકમાં પછીનાં $19$ વર્ષ સુધી પ્રતિ વર્ષ $Rs.\,10,000$ નો વધારો થાય છે. તો તે $20$ વર્ષમાં કુલ કેટલી રકમ મેળવશે ?
Here, we have an $\mathrm{A.P.}$ with $a=3,00,000, d=10,000,$ and $n=20$ Using the sum formula, we get,
$S_{20}=\frac{20}{2}[600000+19 \times 10000]=10(790000)=79,00,000$
Hence, the person received $Rs.\, 79,00,000$ as the total amount at the end of $20$ years.
શ્રેણી $S = 1 -2 + 3\, -\, 4 … n$ પદો , માટે
વિધાન $-1$ : શ્રેણીનો સરવાળો $n$ પર આધારિત છે , i.e. જ્યાં તે યુગ્મ કે અયુગ્મ હોય
વિધાન $-2$ : શ્રેણીનો સરવાળો $-\frac {n}{2}$ જ્યાં $n$ એ કોઈ યુગ્મ પૂર્ણાક છે
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=\frac{2 n-3}{6}$
$\Delta ABC$ માં જો $a, b, c$ એ સમાંતર શ્રેણીમાં હોય તો નીચેનામાંથી અસત્ય વિધાન મેળવો.
જો $^n{C_4},{\,^n}{C_5},$ અને ${\,^n}{C_6},$ એ સમાંતર શ્રેણીમાં હોય તો $n$ મેળવો.
એક માણસ વાર્ષિક $5\%$ ના સાદા વ્યાજે બેંકમાં $Rs.$ $10,000$ જમા કરાવે છે, તો તેણે જમા કરાવેલ રકમથી $15$ માં વર્ષમાં જમા રકમ અને $20$ વર્ષ પછીની કુલ રકમ શોધો.