English
Hindi
8. Sequences and Series
medium

જો સમાંતર શ્રેણીના $p$ પદોનો સરવાળો તેના $q$ પદોના સરવાળા જેટલો હોય, તો તેના $(p +q)$ પદોનો સરવાળો કેટલો થશે ?

A

$p - q$

B

$p + q$

C

$0$

D

$- (p + q)$

Solution

આપેલ મુજબ 

$\,\frac{\text{p}}{\text{2}}\,[2a\,\,+\,\,(p\,\,-\,\,1)d]=\,\,\frac{q}{2}\,[2a\,\,+\,\,(q\,\,-\,\,1)d]$

$\,\,2a\,(p\,\,-\,\,q)\,+\,\,d\,({{p}^{2}}\,-\,\,p\,\,-\,\,{{q}^{2}}\,+\,\,q)=0$

$(p\,\,-\,\,q)\,\,[2a\,\,+\,\,d(p\,\,+\,\,q\,\,-\,\,1)]\,\,=\,\,0$

$\Rightarrow \,\,2a\,\,+\,\,(p\,\,+\,\,q\,\,-\,\,1)\,d\,\,=\,\,0\,(\because \,\,p\,\,\ne \,\,q)$

${{S}_{p\,+\,q}}\,=\,\,\frac{p\,\,+\,\,q}{2}\,\,[2a\,\,+\,\,(p\,\,+\,\,q\,\,-\,\,1)d]\,\,=\,\,\frac{p\,\,+\,\,q}{2}\,\,(0)\,\,=\,\,0\,\,$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.