વધતી સમાંતર શ્રેણીમાં ચાર જુદા જુદા પૂર્ણાકો લો. તેમાંનો એક પૂર્ણાક બાકીના ત્રણ પૂર્ણાકોના વર્ગના સરવાળા બરાબર છે. તો બધી જ સંખ્યાઓનો ગુણાકાર કેટલો થાય ?
$-2$
$1$
$0$
$2$
ધારોકે અંકો $a,b,c$ સમાંતર શ્રેણીમાં છે.આ ત્રણેય અંકોનો ત્રણ વાર ઉપયોગ કરીને $9-$અંકો વાળી એવી સંખ્યા બનાવવામાં આવે છે કે જેથી ત્રણ ક્રમિક અંકો ઓછામાં ઓછા એક વાર સમાંતર શ્રેણીમાં હોય.આ પ્રકારની કેટલી સંખ્યાઓ બનાવી શકાય છે?
સમાંતર શ્રેણીનું પ્રથમ પદ $10$ અને છેલ્લુ પદ $50$ છે તથા તેના બધાં પદોનો સરવાળો $300$ છે, તો તેના પદની સંખ્યા $n = ….$
જો $x_1 , x_2 , ..... , x_n$ અને $\frac{1}{{{h_1}}},\frac{1}{{{h^2}}},......\frac{1}{{{h_n}}}$ એ એવી બે સમાંતર શ્રેણી કે જેથી $x_3 = h_2 = 8$ અને $x_8 = h_7 = 20$ હોય તો $x_5. h_{10}$ ની કિમત મેળવો.
જો $a$ અને $b$ વચ્ચેનો સમાંતર મધ્યક $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ ન હોય, તો $n$ નું મૂલ્ય શોધો.
જો સમાંતર શ્રેણીનાં $p^{\text {th }}, q^{\text {th }}$ અને $r^{\text {th }}$ માં પદો અનુક્રમે $a, b, c$ હોય તો બતાવો કે, $(q-r) a+(r-p) b+(p-q) c=0$