સમાંતર શ્રેણીનું $7$ મુ પદ $40$ હોય, તો તેના પ્રથમ $13$ પદોનો સરવાળો........ થશે.
$53$
$520$
$1040$
$2080$
સમાંતર શ્રેણીના $n$ પદોનો સરવાળો $2n^2 + 5n$ હોય, તો તેનું $n$ મું પદ......... છે.
ધારો કે $\mathrm{S}_{\mathrm{n}}$ એક સમાંતર શ્રેણીના પ્રથમ $\mathrm{n}$ પદ્દોનો સરવાળો દર્શાવે છે. જે $\mathrm{S}_{10}=390$ તથા દસમા અને પાંચમા પદોનો ગુણોત્તર $15: 7$ હોય, તો $S_{15}-S_5=$........................
એક બહુકોણમાં બે ક્રમિક અંતઃકોણોનો તફાવત $5^{\circ}$ છે. જો સૌથી નાનો ખૂણો $120^{\circ}$ નો હોય, તો તે બહુકોણની બાજુઓની સંખ્યા શોધો.
સમાંતર શ્રેણીના $n$ પદોનો સરવાળો $3n^2 + 5n$ હોય અને $T_m = 164$ હોય તો $m = ….$
એક સમાંતર શ્રેણીનું પ્રથમ પદ $2$ છે અને પ્રથમ પાંચ પદોનો સરવાળો પછીનાં પાંચ પદના સરવાળાના એક ચતુર્થાંશ ભાગનો છે. તો સાબિત કરો કે $20$ મું પદ $- 122$ છે.