અચળ $P$ અને $Q$ માટે સમાંતર શ્રેણીનાં પ્રથમ $n$ પદોનો સરવાળો $n P+\frac{1}{2} n(n-1) Q$ છે. તો સામાન્ય તફાવત શોધો.
Let $a_{1}, a_{2}, \ldots a_{n}$ be the given $\mathrm{A.P.}$ Then
${S_n} = {a_1} + {a_2} + {a_3} + \ldots + {a_{n - 1}} + {a_n} = nP + \frac{1}{2}n(n - 1)Q$
Therefore $S_{1}=a_{1}=P, S_{2}=a_{1}+a_{2}=2 P+Q$
So that $a_{2}= S _{2}- S _{1}= P + Q$
Hence, the common difference is given by $d=a_{2}-a_{1}=(P+Q)-P=Q$
જો સમાંતર શ્રેણીનું $n$ મું પદ $\frac{(2n + 1)}{3}$ હોય,તો તેના $19 $ પદોનો સરવાળો કેટલો થાય ?
શમશાદ અલી એક સ્કૂટર $Rs$ $22,000$ માં ખરીદે છે. તે $Rs$ $4000$ રોકડા ચૂકવે છે અને બાકીની રકમ $Rs$ $1000$ ના વાર્ષિક હપતાથી અને $10\%$ વ્યાજે ચૂકવે છે, તો તેણે સ્કૂટરની શું કિંમત ચૂકવી હશે? “
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં ${a_7}$ પદ શોધો : $a_{n}=\frac{n^{2}}{2^{n}}$
સમાંતર શ્રેણી $a_1, a_2, a_3, ……$ ના પ્રથમ $n$ પદોનો સરવાળો $50\,n\, + \,\frac{{n\,(n\, - 7)}}{2}A$ છે. જ્યાં $A$ અચળ છે જો $d$ સમાંતર શ્રેણીનો સામાન્ય તફાવત હોય તો $(d,a_{50})$ ની કિમત મેળવો.
સમાંતર શ્રેણીનું $r$ મું પદ $Tr$ છે. તેનું પ્રથમ પદ $a$ અને સામાન્ય તફાવત $d$ છે. જો કેટલાક ધન પૂર્ણાકો $m, n, m \neq n,$ માટે $T_m = 1/n$ અને $T_n = 1/m,$ હોય તો $a - d = …….$