અચળ $P$ અને $Q$ માટે સમાંતર શ્રેણીનાં પ્રથમ $n$ પદોનો સરવાળો $n P+\frac{1}{2} n(n-1) Q$ છે. તો સામાન્ય તફાવત શોધો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $a_{1}, a_{2}, \ldots a_{n}$ be the given $\mathrm{A.P.}$ Then

${S_n} = {a_1} + {a_2} + {a_3} +  \ldots  + {a_{n - 1}} + {a_n} = nP + \frac{1}{2}n(n - 1)Q$

Therefore     $S_{1}=a_{1}=P, S_{2}=a_{1}+a_{2}=2 P+Q$

So that        $a_{2}= S _{2}- S _{1}= P + Q$

Hence, the common difference is given by $d=a_{2}-a_{1}=(P+Q)-P=Q$

Similar Questions

$a_1$, $a_2$, $a_3$, ......., $a_{100}$ સમાંતર શ્રેણીમાં છે. જ્યાં $a_1 = 3$ અને ${S_p}\, = \,\sum\limits_{i\, = \,1}^p {{a_i},\,1\,\, \le \,\,p\,\, \le \,\,100.} $ છે. કોઈ પણ પૂર્ણાક $n$ માટે $m = 5n$ લો. જો $S_m/S_n$ એ $n$ ઉપર આધારીત ન હોય તો $a_2= ......$

જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં ${a_7}$ પદ શોધો : $a_{n}=\frac{n^{2}}{2^{n}}$ 

શ્રેણી $a_{n}$ નીચે પ્રમાણે વ્યાખ્યાયિત છે :

${a_1} = 1,$ $n\, \ge \,2$ માટે ${a_n} = {a_{n - 1}} + 2.$

આ શ્રેણીનાં પ્રથમ પાંચ પદ લખો અને સંબંધિત શ્રેઢી લખો : 

જો $a_1 , a_2, a_3, . . . . , a_n, ....$ એ સમાંતર શ્રેણીમાં છે કે જેથી $a_4 - a_7 + a_{10}\, = m$ હોય તો પ્રથમ $13$ પદોનો સરવાળો ............ $\mathrm{m}$ મા મેળવો.

  • [JEE MAIN 2013]

જો $a_n$ એ શ્રેઢી છે કે જેથી $a_1 = 5$ અને $a_{n+1} = a_n + (n -2)$ બધા $n \in N$ માટે , હોય તો $a_{51}$ ની કિમત મેળવો