$a_1, a_2, a_3, ….a_n$ સમાંતર શ્રેણીમાં છે. જો તેનો સામાન્ય તફાવત $d$ હોય, તો $sin\,\, d[cosec\ a_1 . cosec\ a_2 + cosec\ a_2 . cosec\ a_3 +….+cosec\ a_{n -1} . cosec\ a_n] $ ની કિમત મેળવો.
$cosec\ a_1 - cosec\ a_n$
$sec\ a_1 - sec\ a_n$
$cot\ a_1 - cot\ a_n$
$tan\ a_1 - tan\ a_n$
જો બહૂકોણનો અંતર્ગત ખૂણાઓ સમાંતર શ્રેણીમાંં હોય અને નાનો ખૂણો ${120^o}$ છે,અને સામાન્ય તફાવત $5^o$ નો હોય તો બહૂકોણની બાજુની સંખ્યા મેળવો.
જો $S_1, S_2$ અને $S_3$ અનુક્રમે સમાંતર શ્રેણીના પ્રથમ $n_1, n_2$ અને $n_3$ પદોના સરવાળા દર્શાવે તો, $\frac{{{S_1}}}{{{n_1}}}\,({n_2}\, - \,{n_3})\,\, + \,\,\frac{{{S_2}}}{{{n_2}}}\,({n_3}\, - \,{n_1})\,\, + \,\,\frac{{{S_3}}}{{{n_3}}}\,({n_1}\, - \,{n_2})\,\, = ....$
$-6,-\frac{11}{2},-5, \ldots \ldots$ સમાંતર શ્રેણીનાં કેટલાં પ્રથમ પદનો સરવાળો $-25$ થાય ?
જો $a _{1}, a _{2}, a _{3} \ldots$ અને $b _{1}, b _{2}, b _{3} \ldots$ એ સમાંતર શ્રેણી મા હોય તથા $a_{1}=2, a_{10}=3, a_{1} b_{1}=1=a_{10} b_{10}$ હોય,તો $a_{4} b_{4}=\dots$
ધારોકે $\alpha, \beta$ અને $\gamma$ ત્રણ ધન વાસ્તવિક સંખ્યાઓ છે. ધારોકે $f(x)=\alpha x^{5}+\beta x^{3}+\gamma x, x \in R$ અને $g: R \rightarrow R$ એવું છે કે જેથી પ્રત્યેક $x \in R$ માટે $g(f(x))=x$ થાય. ને $a _{1}, a _{2}, a _{3}, \ldots, a _{ n }$ સમાંતર શ્રેણીમાં હોય અને તેનો મધ્યક શૂન્ય હોય, તો $f\left(g\left(\frac{1}{ n } \sum_{i=1}^{ n } f\left( a _{i}\right)\right)\right)$ ની કિંમત .............. છે.