$a_1, a_2, a_3, ….a_n$ સમાંતર શ્રેણીમાં છે. જો તેનો સામાન્ય તફાવત $d$ હોય, તો $sin\,\, d[cosec\ a_1 . cosec\ a_2 + cosec\ a_2 . cosec\ a_3 +….+cosec\ a_{n -1} . cosec\ a_n] $ ની કિમત મેળવો.
$cosec\ a_1 - cosec\ a_n$
$sec\ a_1 - sec\ a_n$
$cot\ a_1 - cot\ a_n$
$tan\ a_1 - tan\ a_n$
નીચેની ત્રણ સમાંતર શ્રેણીઓ
$3,7,11,15,...................,399$
$2,5,8,11,............,359$ અને
$2,7,12,17,...........,197$,
ના સામાન્ય પદોનો સરવાળો $.....$ છે.
જો સમાંતર શ્રેણીનું $n$ મું પદ $t_n$ અને જો $t_7 = 9,$ હોય, તો સામાન્ય તફાવતનું મૂલ્ય કે જે $t_1\ t_2\ t_7$ ને લઘુત્તમ બનાવે તે કેટલું હશે ?
જો કોઈ $\alpha$ માટે $3^{2 \sin 2 \alpha-1},14$ અને $3^{4-2 \sin 2 \alpha}$ એ પ્રથમ ત્રણ સમાંતર શ્રેણીના પદો હોય તો તે સમાંતર શ્રેણીનું છઠ્ઠું પદ ............ થાય
$1$ થી $100 $ વચ્ચેની $2$ અથવા $5$ વડે વિભાજ્ય સંખ્યાઓનો સરવાળો શોધો. છે.
સમાંતર શ્રેણીના $n$ પદોનો સરવાળો $3n^2 + 5n$ હોય અને $T_m = 164$ હોય તો $m = ….$