એક સમાંતર શ્રેણીનાં પ્રથમ $m$ અને $n$ પદોના સરવાળાના ગુણોત્તર $m^{2}: n^{2}$ છે. સાબિત કરો કે $m$ માં તથા $n$ માં પદોનો ગુણોત્તર $(2 m-1):(2 n-1)$ થાય.
Let $a$ and $b$ be the first term and the common difference of the $A.P.$ respectively. According to the given condition,
$\frac{{{\rm{ Sum}}\,\,{\rm{of }}\,\,m\,\,{\rm{ terms }}}}{{{\rm{ Sum }}\,\,{\rm{of}}\,{\rm{ }}n{\rm{ }}\,\,{\rm{terms }}}} = \frac{{{m^2}}}{{{n^2}}}$
$\Rightarrow \frac{\frac{m}{2}[2 a+(m-1) d]}{\frac{n}{2}[2 a+(n-1) d]}=\frac{m^{2}}{n^{2}}$
$\Rightarrow \frac{2 a+(m-1) d}{2 a+(n-1) d}=\frac{m}{n}$ ........$(1)$
Putting $m=2 m-1$ and $n=2 n-1,$ we obtain
$\frac{2 a+(2 m-2) d}{2 a+(2 n-2) d}=\frac{2 m-1}{2 n-1}$
$\Rightarrow \frac{a+(m-1) d}{a+(n-1) d}=\frac{2 m-1}{2 n-1}$ ..........$(2)$
$\frac{{{m^{th}}\,\,{\rm{ term}}\,\,{\rm{ of}}\,\,{\rm{ A}}{\rm{.P}}{\rm{. }}}}{{{n^{{\rm{th }}}}\,\,{\rm{ term }}\,\,{\rm{of}}\,\,{\rm{ A}}{\rm{.P}}{\rm{. }}}} = \frac{{a + (m - 1)d}}{{a + (n - 1)d}}$
From $(2)$ and $(3),$ we obtain
$\frac{m^{H h} \text { termof A.P. }}{n^{t h} \text { termof A.P. }}=\frac{2 m-1}{2 n-1}$
Thus, the given result is proved.
$3 + 7 + 11 +....+ 407$ સમાંતર શ્રેણીમાં છેલ્લેથી $20$ મું પદ ......છે.
એક સમાંતર શ્રેણીનાં $n$ પદોનો સરવાળો $3 n^{2}+5 n$ અને $m$ મું પદ $164$ છે, તો $m$ નું મૂલ્ય શોધો.
એક વ્યક્તિના પ્રથમ વર્ષની આવક $Rs. \,3,00,000$ છે. તેની આવકમાં પછીનાં $19$ વર્ષ સુધી પ્રતિ વર્ષ $Rs.\,10,000$ નો વધારો થાય છે. તો તે $20$ વર્ષમાં કુલ કેટલી રકમ મેળવશે ?
જો ચતુષ્કોણના બધા અંતર્ગત ખૂણાઓ સમાંતર શ્રેણીમાં અને તેમની વચ્ચેનો સામાન્ય તફાવત $10^o$ હોય તો ન્યૂનતમ ખૂણો ............$^o$ થાય ?
જો સમાંતર શ્રેણીમાં આવેલાં પ્રથમ $n, 2n, 3n$ પદોના સરવાળા અનુક્રમે $S_{1}, S_{2}$ અને $S_{3},$ હોય, તો બતાવો કે $S_{3}=3\left(S_{2}-S_{1}\right)$.