જો $a,b,c,d$ અને $p$ જુદી જુદી વાસ્તવિક સંખ્યાઓ હોય કે જેથી $(a^2 + b^2 + c^2)\ p^2 - 2p (ab + bc + cd) + (b^2 + c^2 + d^2) \leq  0$, થાય તો ....

  • A

    $a, b, c, d$ સમાંતર શ્રેણીમાં હોય

  • B

    $ab = cd$

  • C

    $a, b, c, d$ સમગુણોત્તર શ્રેણીમાં હોય

  • D

    $ac = bd$

Similar Questions

ધારોકે $a_{1}, a_{2,}, \ldots \ldots, a_{ n }, \ldots \ldots . .$ એ પ્રાકૃતિક સંખ્યાઆની એક સમાંતર શ્રેણી છે. જો આ શ્રેણીના પ્રથમ પાંચ પદોના સરવાળા અને પ્રથમ નવ પદોના સરવાળાનો ગુણોત્તર $5: 17$ હોય અને $110 < a_{15} < 120$ હોય, તો આ શ્રેણીના પ્રથમ દસ પદોનો સરવાળો ......... છે.

  • [JEE MAIN 2022]

સમાંતર શ્રેણીનું પદ $2$  અને સામાન્ય તફાવત $4 $ હોય, તો તેના પ્રથમ $40$ પદોનો સરવાળો........ છે.

સમાંતર શ્રેણીનાં $n $ પદોનો સરવાળો $nA + n^2B$  છે, જ્યાં $A$ અને $B$ અચળ છે, તો આ શ્રેણીનો સામાન્ય તફાવત....... છે.

જો ${\left( {1 - 2x + 3{x^2}} \right)^{10x}}  = {a_0} + {a_1}x + {a_2}{x^2} + .....+{a_n}{x^n},{a_n} \ne 0$, હોય તો $a_0,a_1,a_2,...a_n$ નો સમાંતર મધ્યક મેળવો. 

જો $< {a_n} >$ એ સમાંતર શ્રેણીમાં છે અને $a_1 + a_4 + a_7 + .......+ a_{16} = 147$,હોય તો $a_1 + a_6 + a_{11} + a_{16}$ i ની કિમત મેળવો