જો $a_1, a_2, a_3, .... a_{21}$ એ સમાંતર શ્રેણીમાં હોય અને $a_3 + a_5 + a_{11}+a_{17} + a_{19} = 10$ થાય તો $\sum\limits_{r = 1}^{21} {{a_r}} $ ની કિમત મેળવો
$44$
$42$
$40$
$46$
સમાંતર શ્રેણીના પ્રથમ $p$ પદોનો સરવાળો, પ્રથમ $q$ પદોના સરવાળા જેટલો થાય છે, તો પ્રથમ $(p+q)$ પદોનો સરવાળો શોધો.
આપેલ શ્રેણીનાં પ્રથમ પાંચ પદ શોધો અને સંબંધિત શ્રેઢી મેળવો : $a_{1}=-1, a_{n}=\frac{a_{n-1}}{n},$ માટે $n\, \geq\, 2$
સમાંતર શ્રેણીના પ્રથમ $n$ પદોનો સરવાળો $2n + 3n^2$ છે અને નવી સમાંતર શ્રેણી બનાવમાં આવે છે કે જેમાં પ્રથમ પદ સમાન હોય અને સામાન્ય તફાવત બમણો હોય તો નવી શ્રેણીના $n$ પદનો સરવાળો મેળવો.
$1 + 2 + 3 + 4 + 5 + 8 + 7 + 16 + 9 + …..$ શ્રેઢીના $40$ પદોનો સરવાળો કેટલો થાય ?
જો સમાંતર શ્રેણીના $n$ પદોનો સરવાળો $Pn + Qn^2$ હોય જ્યાં $P,\,Q$ અચળ, હોય તો તેમનો સામાન્ય તફાવત કેટલો થાય ?