જો $a_1, a_2, a_3, .... a_{21}$ એ સમાંતર શ્રેણીમાં હોય અને $a_3 + a_5 + a_{11}+a_{17} + a_{19} = 10$ થાય તો $\sum\limits_{r = 1}^{21} {{a_r}} $ ની કિમત મેળવો
$44$
$42$
$40$
$46$
$a_1, a_2, a_3, ….a_n$ સમાંતર શ્રેણીમાં છે. જો તેનો સામાન્ય તફાવત $d$ હોય, તો $sin\,\, d[cosec\ a_1 . cosec\ a_2 + cosec\ a_2 . cosec\ a_3 +….+cosec\ a_{n -1} . cosec\ a_n] $ ની કિમત મેળવો.
જો $a _{1}, a _{2}, a _{3} \ldots$ અને $b _{1}, b _{2}, b _{3} \ldots$ એ સમાંતર શ્રેણી મા હોય તથા $a_{1}=2, a_{10}=3, a_{1} b_{1}=1=a_{10} b_{10}$ હોય,તો $a_{4} b_{4}=\dots$
જો સમાંતર શ્રેણીમાં આવેલાં પ્રથમ $n, 2n, 3n$ પદોના સરવાળા અનુક્રમે $S_{1}, S_{2}$ અને $S_{3},$ હોય, તો બતાવો કે $S_{3}=3\left(S_{2}-S_{1}\right)$.
જો $a, b, c,d$, તે સમગુણોત્તર શ્રેણીમાં હોય, અને જો $a$ અને $b$ $x^{2}-3 x+p=0$ ના બીજ હોય અને $c, d$ $x^{2}-12 x+q=0$ ના બીજ હોય તો સાબિત કરો કે $(q+p):(q-p)=17: 15$
જેને $4$ વડે ભાગતાં શેષ $1$ વધે તેવી બે આંકડાની સંખ્યાઓનો સરવાળો શોધો.