એક માણસ $4500$ ચલણી નોટોની ગણતરી કરે છે. ધારો કે $a_n $ નોટોની સંખ્યા દર્શાવે છે. તે $n$ મિનીટમાં ગણતરી કરે છે. જો $a_1$ = $a_2$ = … = $a_1$0 $= 150$ અને $a_{10}, a_{11},.....$ સમાંતર શ્રેણીના સામાન્ય તફાવત $-2$ સાથે હોય, તો તેના દ્વારા બધી નોટોની ગણતરી કરવા માટે લાગતો સમય કેટલા .............. મિનિટ હશે ?
$24$
$34 $
$125$
$135 $
જો $a _{1}, a _{2}, a _{3} \ldots$ અને $b _{1}, b _{2}, b _{3} \ldots$ એ સમાંતર શ્રેણી મા હોય તથા $a_{1}=2, a_{10}=3, a_{1} b_{1}=1=a_{10} b_{10}$ હોય,તો $a_{4} b_{4}=\dots$
જો $a, b, c$ એ ત્રણ સમગુણોત્તર શ્રેણીના ત્રણ ભિન્ન પદો હોય તથા સમીકરણ $ax^2 + 2bc + c = 0$ અને $dx^2 + 2ex + f = 0$ ને સામાન્ય ઉકેલો હોય તો નીચેનાના માંથી ક્યું વિધાન સાચું છે ?
$7$ વડે ભાગાકાર કરી શકાય તેવી $100$ થી $300$ વચ્ચેની દરેક સંખ્યાનો સરવાળો કેટલો થશે ?
સમાંતર શ્રેણીનાં $n$ પદોનો સરવાળો $3n^2 + 5n$ અને $t_n = 164$ હોય, તો $n =…..$
જો $(b+c),(c+a),(a+b)$ એ સ્વરિત શ્રેણીમાં હોય તો $a^2,b^2,c^2$ એ ........ શ્રેણીમાં છે