ચાર સંખ્યાઓ સમાંતર શ્રેણીમાં છે. તેના પહેલાં અને છેલ્લા પદનો સરવાળો $8$ છે અને વચ્ચે બે પદનો ગુણાકાર $15$ છે, તો શ્રેણીની સૌથી નાની સંખ્યા કઈ છે?
$4$
$3$
$2$
$1$
જો $a, b, c$ એ ત્રણ સમગુણોત્તર શ્રેણીના ત્રણ ભિન્ન પદો હોય તથા સમીકરણ $ax^2 + 2bc + c = 0$ અને $dx^2 + 2ex + f = 0$ ને સામાન્ય ઉકેલો હોય તો નીચેનાના માંથી ક્યું વિધાન સાચું છે ?
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=(-1)^{n-1} 5^{n+1}$
જો સમીકરણ $(b -c)x^2 + (c - a)x + (a - b) = 0$ ના ઉકેલો સમાન હોય, તો $a, b, c$ કઈ શ્રેણી હશે ?
સમાંતર શ્રેણીના $n$ પદોનો સરવાળો $2n^2 + 5n$ હોય, તો તેનું $n$ મું પદ......... છે.
જો $a, b$ અને $c$ એ સમાંતર શ્રેણીનાં અનુક્રમે પ્રથમ, દ્વિતીય અને અંતિમ પદ હોય, તો આ પદની કુલ સંખ્યા...... છે.