જો સમાંતર શ્રેણી $2, 5, 8, ..$ ના પ્રથમ $2n$ પદોનો સરવાળો એ સમાંતર શ્રેણી $57, 59, 61, ..$ ના પ્રથમ $n$ પદોના સરવાળા બરાબર હોય, તો $n =…$
$10$
$12$
$11$
$13$
ધારો કે ${a_1},{a_2},\;.\;.\;.\;.,{a_{49}}$ સમાંતર શ્રેણીમાં છે તથા $\mathop \sum \limits_{k = 0}^{12} {a_{4k + 1}} = 416$ અને ${a_9} + {a_{43}} = 66$. જો $a_1^2 + a_2^2 + \ldots + a_{17}^2 = 140m,$ તો $m = \;\;..\;.\;.\;.\;$
જો $a^{1/x} = b^{1/y} = c^{1/z}$ અને $a, b, c$ સમગુણોત્તર શ્રેણીમાં હોય, તો $x, y$ અને $z$ એ.....
જો સમાંતર શ્રેણીના $p$ પદોનો સરવાળો તેના $q$ પદોના સરવાળા જેટલો હોય, તો તેના $(p +q)$ પદોનો સરવાળો કેટલો થશે ?
જો $a, b, c,d$ સમગુણોત્તર શ્રેણીમાં હોય, તો સાબિત કરો કે $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ સમગુણોત્તર શ્રેણીમાં છે.
સમાંતર શ્રેણીઓ
$S_1 = 1, 6, 11, .....$
$S_2 = 3, 7, 11, .....$
માં પચીસમુ સામાન્ય પદ મેળવો