જો $x_1 , x_2 , ..... , x_n$ અને $\frac{1}{{{h_1}}},\frac{1}{{{h^2}}},......\frac{1}{{{h_n}}}$ એ એવી બે સમાંતર શ્રેણી કે જેથી $x_3 = h_2 = 8$ અને $x_8 = h_7 = 20$ હોય તો $x_5. h_{10}$ ની કિમત મેળવો.
$2560$
$2650$
$3200$
$1600$
જો $\frac{1}{{{x_1}}},\frac{1}{{{x_2}}},\frac{1}{{{x_3}}},.....,$ $({x_i} \ne \,0\, $ બધા $\,i\, = 1,2,....,n)$ એ સમાંતર શ્રેણીમાં હોય કે જ્યાં $x_1 = 4$ અને $x_{21} = 20$ અને $x_n > 50$ જ્યાં $n$ એ ન્યૂનતમ ધન પૂર્ણાંક સંખ્યા છે તો $\sum\limits_{i = 1}^n {\left( {\frac{1}{{{x_i}}}} \right)} $ ની કિમત મેળવો
વધતી સમાંતર શ્રેણીમાં ચાર જુદા જુદા પૂર્ણાકો લો. તેમાંનો એક પૂર્ણાક બાકીના ત્રણ પૂર્ણાકોના વર્ગના સરવાળા બરાબર છે. તો બધી જ સંખ્યાઓનો ગુણાકાર કેટલો થાય ?
અહી $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots$ એ સમાંતર શ્રેણીમાં છે. જો $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$ હોય તો $\frac{a_{11}}{a_{10}}$ ની કિમંત મેળવો.
$3,3^2, 3^3, ......, 3^n$ નો સમગુણોત્તર મધ્યક કયો હશે ?
સમાંતર શ્રેણી $b_{1}, b_{2}, \ldots,$ $b_{ m }$ નો સામાન્ય તફાવત એ સમાંતર શ્રેણી $a _{1}, a _{2}, \ldots, a _{ n }$ ના સામાન્ય તફાવત કરતાં $2$ વધારે છે જો $a _{40}=-159, a _{100}=-399$ અને $b _{100}= a _{70},$ હોય તો $b _{1}$ ની કિમત શોધો.