English
Hindi
8. Sequences and Series
medium

$(1 - x) (1 - 2x) (1 - 2^2. x) (1 - 2^3. x) …. (1 - 2^{15}. x) $ ના ગુણાકારમાં $x^{15} $ નો સહગુણક મેળવો.

A

$2^{105} - 2^{121}$

B

$2^{121} - 2^{105}$

C

$2^{120} - 2^{104}$

D

આપેલ પૈકી એકપણ નહિ.

Solution

ગુણાકાર = $( – 1)\,( – 2)\,( – {2^2})\,…\,( – {2^{15}})\,(x\, – \,1)\,\left( {x\,\, – \,\,\frac{1}{2}} \right)\,\left( {x\,\, – \,\,\frac{1}{{{2^2}}}} \right)\,\left( {x\,\, – \,\,\frac{1}{{{2^3}}}} \right)\,…\,\left( {x\,\, – \,\,\frac{1}{{{2^{15}}}}} \right)$

$=\, – \,{2^{1 + 2 + 3\,…\, + \,15}}\,(x\, – \,1)\,\left( {x\,\, – \,\,\frac{1}{2}} \right)\,\left( {x\,\, – \,\,\frac{1}{{{2^2}}}} \right)\,….\,\left( {x\,\, – \,\,\frac{1}{{{2^{15}}}}} \right)$

$x^{15}$ નો સહગુણક $\, = \,\,{2^{1\, + \,2\, + \,3\, + \,…..\,15}}\,\left( { – 1\,\, – \,\,\frac{1}{2}\,\, – \,\,\frac{1}{{{2^2}}}\, – \,….\, – \,\frac{1}{{{2^{15}}}}} \right)$

$x^{15}$ નો સહગુણક $\, =2^{105} – 2^{121}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.