નીચેની શ્રેણીનાં પ્રથમ $n$ પદોનો સરવાળો શોધો :
$6+.66+.666+\ldots$
$6+.66+.666+\ldots$
Let $S_{n}=06+0.66+0.666+\ldots .$ to $n$ terms
$=6[0.1+0.11+0.111+\ldots . \text { to } n \text { terms }]$
$=\frac{6}{9}[0.9+0.99+0.999+\ldots . . \text { to } n \text { terms }]$
$=\frac{6}{9}\left[\left(1-\frac{1}{10}\right)+\left(1-\frac{1}{10^{2}}\right)+\left(1-\frac{1}{10^{3}}\right)+\ldots . \text { to } n \text { terms }\right]$
$=\frac{2}{3}\left[(1+1+\ldots n \text { terms })-\frac{1}{10}\left(1+\frac{1}{10}+\frac{1}{10^{2}}+\ldots n \text { terms }\right)\right]$
$=\frac{2}{3}\left[n-\frac{1}{10}\left(\frac{1-\left(\frac{1}{10}\right)^{n}}{1-\frac{1}{10}}\right)\right]$
$=\frac{2}{3} n-\frac{2}{30} \times \frac{10}{9}\left(1-10^{-n}\right)$
$=\frac{2}{3} n-\frac{2}{27}\left(1-10^{-n}\right)$
જો સમગુણોત્તર શ્રેણીનું $(m + n)$ મું પદ $9$ અને $(m - n)$ મું પદ $4$ હોય, તો $m^{th}$ મું પદ કયું હશે ?
જો ${\text{a}}$ અને ${\text{b}}$ વચ્ચેનો સમગુણોત્તર મધ્યક $\frac{{{a^{n + 1}}\, + \,{b^{n + 1}}}}{{{a^n} + {b^n}}}\,\,$ હોય , તો ${\text{n}} $ નું કેટલું થાય ?
સમગુણોત્તર શ્રેણી $1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + .....\,$ ના ${\text{9}}$ પદોનો સરવાળો શોધો.
સમીકરણ $x^2 - 18x + 9 = 0$ ઉકેલો વચ્ચેનો સમગુણોત્તર મધ્યક કયો હશે ?
સમગુણોત્તર શ્રેણી $8 + 12 + 18 + 27 + …..$ ના $9$ મું પદ મેળવો.