ધારોકે અંકો $a,b,c$ સમાંતર શ્રેણીમાં છે.આ ત્રણેય અંકોનો ત્રણ વાર ઉપયોગ કરીને $9-$અંકો વાળી એવી સંખ્યા બનાવવામાં આવે છે કે જેથી ત્રણ ક્રમિક અંકો ઓછામાં ઓછા એક વાર સમાંતર શ્રેણીમાં હોય.આ પ્રકારની કેટલી સંખ્યાઓ બનાવી શકાય છે?
$1261$
$1262$
$1263$
$1260$
જે સમાંતર શ્રેણીનું $k$ મું પદ $5k + 1$ હોય તેના પ્રથમ પદનો સરવાળો શોધો.
અહી $a_1=8, a_2, a_3, \ldots a_n$ એ સમાંતર શ્રેણી માં છે . જો પ્રથમ ચાર પદોનો સરવાળો $50$ અને અંતિમ ચાર પદોનો સરવાળો $170$ હોય તો મધ્યના બે પદોનો ગુણાકાર મેળવો.
જો સમીકરણ $x^3 - 12x^2 + 39x - 28 = 0$ ના બીજ સમાંતર શ્રેણી હોય તો તેનો સામાન્ય તફાવત કેટલો હોય ?
ધારો કે $a_1, a_2, \ldots, a_n$ સમાંતર શ્રેણીમાં છ. જો $a_5=2 a_7$ અને $a_{11}=18$ હોય, તો $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots . \cdot \frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)=................$
જો $log2, log (2^x - 1)$ અને $log (2^x + 3)$ સમાંતર શ્રેણીમાં હોય તો $x$ નું મૂલ્ય....... છે.