ધારો કે $3,7,11,15, \ldots, 403$ અને $2, 5, 8, 11, .,. 404$ એ બે સમાંતર શ્રેણીઓ છે. તો તેમાંના સામાન્ય પદોનો સરવાળો...................... છે.
$6696$
$6697$
$668$
$6699$
જો શ્રેણીના $n $ પદોનો સરવાળો $3n^2 + 4n$ ; થાય, તો તે કઈ શ્રેણી હોય ?
$\Delta {\text{ABC}}$ માટે $a\,\,{\cos ^2}\frac{C}{2} + c\,\,{\cos ^2}\frac{A}{2}\,\, = \,\,\frac{{3b}}{2}$ તો બાજુ એ ${\text{a, b, c }}......$
આપેલ શ્રેણીનાં પ્રથમ પાંચ પદ શોધો અને સંબંધિત શ્રેઢી મેળવો : $a_{1}=3, a_{n}=3 a_{n-1}+2$ માટે $n\,>\,1$
જો $a_r > 0, r \in N$ અને $a_1$,$a_2$,$a_3$,..,$a_{2n}$ સમાંતર શ્રેણીમાં હોય,તો$\frac{{{a_1}\, + \,{a_{2n}}}}{{\sqrt {{a_1}} + \sqrt {{a_2}} }}\, + \,\frac{{{a_2}\, + \,{a_{2n - 1}}}}{{\sqrt {{a_2}} + \sqrt {{a_3}} }}\, + \,\frac{{{a_3}\, + \,{a_{2n - 2}}}}{{\sqrt {{a_3}} \, + \,\sqrt {{a_4}} }}\, + \,..\, + \,\frac{{{a_n}\, + \,{a_{n + 1}}}}{{\sqrt {{a_n}\,} \, + \,{a_{n + 1}}}}\, = \,.........$
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=n \frac{n^{2}+5}{4}$