સમાંતર શ્રેણીના પ્રથમ ચાર પદોનો સરવાળો $56 $ થાય અને તેના અંતિમ ચાર પદોનો સરવાળો $112$ થાય છે. જો તેનું પ્રથમ પદ $11$ હોય, તો તેના પદોની સંખ્યા કેટલી હશે ?
$10$
$11$
$12$
આપેલ પૈકી એક પણ નહિ
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં ${a_{20}}$પદ શોધો : $a_{n}=\frac{n(n-2)}{n+3}$
જો ${{\text{a}}_{\text{1}}}{\text{, }}{{\text{a}}_{\text{2}}}{\text{, }}{{\text{a}}_{\text{3}}}{\text{ }}............{\text{ , }}{{\text{a}}_{\text{n}}}$ સમગુણોત્તર શ્રેણી રચે છે.
$\left| {\begin{array}{*{20}{c}}
{\log \,{a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}} \\
{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}} \\
{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}
\end{array}} \right|$ ની કિંમતની મેળવો.
વિધાન $- I :$ જો શ્રેણીના $n$ પદોનો સરવાળો $6n^2 + 3n + 1$ થાય, તો તે સમાંતર શ્રેણી હોય
વિધાન $-II :$ સમાંતર શ્રેણીના $n$ પદોનો સરવાળો હંમેશા $an^2 + bn$ સ્વરૂપમાં હોય.
ધારોકે અંકો $a,b,c$ સમાંતર શ્રેણીમાં છે.આ ત્રણેય અંકોનો ત્રણ વાર ઉપયોગ કરીને $9-$અંકો વાળી એવી સંખ્યા બનાવવામાં આવે છે કે જેથી ત્રણ ક્રમિક અંકો ઓછામાં ઓછા એક વાર સમાંતર શ્રેણીમાં હોય.આ પ્રકારની કેટલી સંખ્યાઓ બનાવી શકાય છે?
જો સમાંતર શ્રેણીનાં $p^{\text {th }}, q^{\text {th }}$ અને $r^{\text {th }}$ માં પદો અનુક્રમે $a, b, c$ હોય તો બતાવો કે, $(q-r) a+(r-p) b+(p-q) c=0$