સમાંતર શ્રેણીના પ્રથમ ચાર પદોનો સરવાળો $56 $ થાય અને તેના અંતિમ ચાર પદોનો સરવાળો $112$ થાય છે. જો તેનું પ્રથમ પદ $11$ હોય, તો તેના પદોની સંખ્યા કેટલી હશે ?
$10$
$11$
$12$
આપેલ પૈકી એક પણ નહિ
સમાંતર શ્રેણીનાં ત્રણ ક્રમિક પદ પૈકી પ્રથમ પદ અને તૃતીય પદનો સરવાળો $12$ છે તથા પ્રથમ પદ અને દ્વિતીય પદનો ગુણાકાર $ 24$ છે, તો પ્રથમ પદ..... હશે.
જો $x,y,z$ સમાંતર શ્રેણીમાં હોય અને ${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$ અને ${\tan ^{ - 1}}z$ પણ કોઇ સમાંતર શ્રેણીમાં હોય તો
$\Delta {\text{ABC}}$ માટે $a\,\,{\cos ^2}\frac{C}{2} + c\,\,{\cos ^2}\frac{A}{2}\,\, = \,\,\frac{{3b}}{2}$ તો બાજુ એ ${\text{a, b, c }}......$
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં ${a_7}$ પદ શોધો : $a_{n}=\frac{n^{2}}{2^{n}}$
સમાંતર શ્રેણીનું $r$ મું પદ $T_r$ લો.$ r = 1, 2, 3, ….$ માટે. જો કેટલાક ધન પૂર્ણાકો $m, n$ માટે
${{\text{T}}_{\text{m}}}\,=\,\,\frac{1}{n}\,$ અને ${{\text{T}}_{\text{n}}}\,=\,\frac{\text{1}}{\text{m}}\text{,}$ હોય,તો ${{\text{T}}_{\text{mn}}}\text{ }......$