ફિબોનાકી શ્રેણી,
$1 = {a_1} = {a_2}{\rm{ }}$ અને $n\, > \,2$ માટે${a_n} = {a_{n - 1}} + {a_{n - 2}},$ દ્વારા વ્યાખ્યાયિત થાય છે.
$n=1,2,3,4,5$ માટે $\frac{a_{n+1}}{a_{n}},$ મેળવો.
$1=a_{1}=a_{2}$
$a_{n}=a_{n-1}+a_{n-2}, n\,>\,2$
$\therefore a_{3}=a_{2}+a_{1}=1+1=2$
$a_{4}=a_{3}+a_{2}=2+1=3$
$a_{5}=a_{4}+a_{3}=3+2=5$
$a_{6}=a_{5}+a_{4}=5+3=8$
For $n=1, \frac{a_{n+1}}{a_{n}}=\frac{a_{2}}{a_{1}}=\frac{1}{1}=1$
For $n=2, \frac{a_{n+1}}{a_{n}}=\frac{a_{3}}{a_{2}}=\frac{2}{1}=2$
For $n=3, \frac{a_{n+1}}{a_{n}}=\frac{a_{4}}{a_{3}}=\frac{3}{2}$
For $n=4, \frac{a_{n+1}}{a_{n}}=\frac{a_{5}}{a_{4}}=\frac{5}{3}$
For $n=5, \frac{a_{n+1}}{a_{n}}=\frac{a_{6}}{a_{5}}=\frac{8}{5}$
આપેલ સમાંતર શ્રેણીમાં બધા પદો ધન પૂર્ણાંક સંખ્યા છે તથા પહેલા નવ પદોનો સરવાળો $200$ કરતાં વધારે અને $220$ કરતાં ઓછો છે. જો શ્રેણીનું બીજું પદ $12$ હોય તો ચોથું પદ મેળવો.
જો અશૂન્ય સામાન્ય તફાવત સાથે સમાંતર શ્રેણીના $100$ માં પદના $100$ ગણા એ તેના $50$ માં પદના $50$ ગણા બરાબર હોય, તો તેનું $150$ મું પદ કયું હોય ?
જો ${{\text{a}}_{\text{1}}}{\text{, }}{{\text{a}}_{\text{2}}}{\text{, }}{{\text{a}}_{\text{3}}}{\text{, }}{\text{......, }}{{\text{a}}_{\text{n}}}$ સમાંતર શ્રેણી હોય તો $\frac{1}{{{a_1}{a_2}}}\,\, + \,\,\frac{1}{{{a_2}{a_3}}}\, + \,\frac{1}{{{a_3}{a_4}}}\,\, + \,\,......\,\, + \,\frac{1}{{{a_{n - 1}}{a_n}}}\,\, = \,\,......$
જો $\tan \left(\frac{\pi}{9}\right), x, \tan \left(\frac{7 \pi}{18}\right)$ એ સમાંતર શ્રેણીમાં છે અને $\tan \left(\frac{\pi}{9}\right), y, \tan \left(\frac{5 \pi}{18}\right)$ એ પણ સમાંતર શ્રેણીમાં હોય તો $|x-2 y|$ ની કિમંત મેળવો.
એક માણસ તેની નોકરીના પ્રથમ ત્રણ મહિનામાં $200$ રૂપિયાની બચત કરે છે. તે પછીના મહિનામાં તેની બચત પહેલાંના મહિના કરતાં $40$ રૂપિયા છે. નોકરીની શરૂઆતથી કેટલા ................. મહિના પછી તેની કુલ બચત $11040$ રૂપિયા થશે ?