ફિબોનાકી શ્રેણી,

$1 = {a_1} = {a_2}{\rm{ }}$ અને $n\, > \,2$ માટે${a_n} = {a_{n - 1}} + {a_{n - 2}},$ દ્વારા વ્યાખ્યાયિત થાય છે.

$n=1,2,3,4,5$ માટે $\frac{a_{n+1}}{a_{n}},$ મેળવો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$1=a_{1}=a_{2}$

$a_{n}=a_{n-1}+a_{n-2}, n\,>\,2$

$\therefore a_{3}=a_{2}+a_{1}=1+1=2$

$a_{4}=a_{3}+a_{2}=2+1=3$

$a_{5}=a_{4}+a_{3}=3+2=5$

$a_{6}=a_{5}+a_{4}=5+3=8$

For $n=1, \frac{a_{n+1}}{a_{n}}=\frac{a_{2}}{a_{1}}=\frac{1}{1}=1$

For $n=2, \frac{a_{n+1}}{a_{n}}=\frac{a_{3}}{a_{2}}=\frac{2}{1}=2$

For $n=3, \frac{a_{n+1}}{a_{n}}=\frac{a_{4}}{a_{3}}=\frac{3}{2}$

For $n=4, \frac{a_{n+1}}{a_{n}}=\frac{a_{5}}{a_{4}}=\frac{5}{3}$

For $n=5, \frac{a_{n+1}}{a_{n}}=\frac{a_{6}}{a_{5}}=\frac{8}{5}$

Similar Questions

જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=\frac{n}{n+1}$

જેને $4$ વડે ભાગતાં શેષ $1$ વધે તેવી બે આંકડાની સંખ્યાઓનો સરવાળો શોધો. 

જો  $p,\;q,\;r$ ધન તેમજ સંમાતર  શ્નેણીમાં હોય તો કઇ શરત માટે  પ્રતિઘાત સમીકરણ $p{x^2} + qx + r = 0$ નાં બિજ વાસ્તવિક બને..

  • [IIT 1995]

જો કોઈ સમાંતર શ્રેણીના ત્રણ પદોનો સરવાળો અને ગુણાકાર અનુક્રમે $33$ અને $1155$ થાય તો આ સમાંતર શ્રેણીના $11^{th}$ માં પદની કિમત મેળવો. 

  • [JEE MAIN 2019]

જો $x, y, z$ સમાંતર શ્રેણીમાં હોય અને $tan^{-1}x, tan^{-1}y$ અને $tan^{-1}z$ પણ સમાંતર શ્રેણીમાં હોય, તો......