સમગુણોત્તર શ્રેણીમાં આપેલી ત્રણ સંખ્યાઓનો સરવાળો $38$ અને ગુણાકાર $1728$ છે, તો તેમાંની સૌથી મોટી સંખ્યા....... છે.
$18$
$16$
$14$
$15$
સમગુણોત્તર શ્રેણી $2,8,32, \ldots$ $n$ પદ સુધી, માટે કયું પદ $131072$ હશે ?
જેનું પ્રથમ પદ $n ^{2}$ અને સામાન્ય ગુણોત્તર $\frac{1}{( n +1)^{2}}$ હોય તેવી અનંત સમગુણોતર શ્રેણીનો સરવાળો ધારો કે $S _{ n }$ છે, જ્યાં $n =1,2, \ldots \ldots, 50$ તો, $\frac{1}{26}+\sum_{ n =1}^{50}\left( S _{ n }+\frac{2}{ n +1}- n -1\right)$ ની કીમત................છે
ધારો કે $A_{1}, A_{2}, A_{3}, \ldots$ એ ધન વાસ્તવિક સંખ્યાઓની વધતી સમગુણોત્તર શ્રેણી છે. જો $A _{1} A _{3} A _{5} A _{7}=\frac{1}{1296}$ અને d $A _{2}+ A _{4}=\frac{7}{36}$, હોય તો $A _{6}+ A _{8}+ A _{10}$ નું મૂલ્ય................
એક $'n$' બાજુ વાળો બહુકોણના અંતર્ગત ખૂણાઓ સમગુણોત્તર શ્રેણીમાં છે જેથી સૌથી નાનો ખૂણો $1^o $ અને સામાન્ય ગુણોત્તર $2^o $ હોય તો $'n'$ ની શક્ય કિમત મેળવો
અહી બે સમગુણોતર શ્રેણીઓ $2,2^{2}, 2^{3}, \ldots$ અને $4,4^{2}, 4^{3}, \ldots$ આપેલ છે કે જેમાં અનુક્રમે $60$ અને $n$ પદ આપેલ છે. જો બધાજ $60+n$ પદોનો સમગુણોતર મધ્યક $(2)^{\frac{225}{8}}$, હોય તો $\sum_{ k =1}^{ n } k (n- k )$ ની કિમંત મેળવો.