$1$ અને $64$ વચ્ચેના બે ગુણોત્તર મધ્યક........ છે.
$1$ અને $64$
$4$ અને $16$
$2$ અને $16$
$8$ અને $16$
સમગુણોત્તર શ્રેણી $\frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}},\frac{1}{{2 - \sqrt 2 }},\frac{1}{2}.....\,$ ના અનંત પદોનો સરવાળો કેટલો થાય?
સમ ગુણોત્તર શ્રેણીના પ્રથમ બે પદનો સરવાળો $12$ છે. ત્રીજા અને ચોથા પદનો સરવાળો $48$ છે. ગુણોત્તર શ્રેણીના પદો ક્રમિક રીતે ઘન અને ઋણ છે. તો પ્રથમ પદ કયું હોય ?
સમગુણોત્તર શ્રેણીના પ્રથમ દસ પદોનો સરવાળો $S_1$ છે અને તે પછીના દસ પદોનો ($11$ થી $20$) સરવાળો $S_2$ છે. તો સામાન્ય ગુણોત્તર કેટલો થશે ?
એક સમગુણોત્તર શ્રેણીનું ચોથું પદ બીજા પદના વર્ગ જેટલું છે અને પ્રથમ પદ $-3$ છે, તો તેનું $7$ મું પદ શોધો.
$0<\mathrm{c}<\mathrm{b}<\mathrm{a}$ માટે , જો $(\mathrm{a}+\mathrm{b}-2 \mathrm{c}) \mathrm{x}^2+(\mathrm{b}+\mathrm{c}-2 \mathrm{a}) \mathrm{x}$ $+(c+a-2 b)=0$ અને $\alpha \neq 1$ એ એક બીજ હોય તો આપલે પૈકી બે વિધાન પૈકી
$(I)$ જો $\alpha \in(-1,0)$, હોય તો $\mathrm{b}$ એ $\mathrm{a}$ અને $\mathrm{c}$ નો સમગુણોતર મધ્યક બની શકે નહીં.
$(II)$ જો $\alpha \in(0,1)$ હોય તો $\mathrm{b}$ એ $a$ અને $c$ નો સમગુણોતર મધ્યક બની શકે.