જો ${\text{lo}}{{\text{g}}_{\text{3}}}\,{\text{2,}}\,{\text{lo}}{{\text{g}}_{\text{3}}}\,{\text{(}}{{\text{2}}^{\text{x}}}{\text{ - 5)}}$ અને ${\text{lo}}{{\text{g}}_{\text{3}}}\,\left( {{2^x} - \frac{7}{2}} \right)\,$ સમાંતર શ્રેણીમાં હોય, તો${\text{x}}\,\, = \,\,.......$
$1,\,\,\frac{1}{2}$
$1,\,\,\frac{5}{2}$
$1,\,\,\frac{3}{2}$
આપેલ પૈકી એક પણ નહિ
એક સમાંતર શ્રેણીનાં પ્રથમ $m$ અને $n$ પદોના સરવાળાના ગુણોત્તર $m^{2}: n^{2}$ છે. સાબિત કરો કે $m$ માં તથા $n$ માં પદોનો ગુણોત્તર $(2 m-1):(2 n-1)$ થાય.
ધારોકે $\alpha, \beta$ અને $\gamma$ ત્રણ ધન વાસ્તવિક સંખ્યાઓ છે. ધારોકે $f(x)=\alpha x^{5}+\beta x^{3}+\gamma x, x \in R$ અને $g: R \rightarrow R$ એવું છે કે જેથી પ્રત્યેક $x \in R$ માટે $g(f(x))=x$ થાય. ને $a _{1}, a _{2}, a _{3}, \ldots, a _{ n }$ સમાંતર શ્રેણીમાં હોય અને તેનો મધ્યક શૂન્ય હોય, તો $f\left(g\left(\frac{1}{ n } \sum_{i=1}^{ n } f\left( a _{i}\right)\right)\right)$ ની કિંમત .............. છે.
જો $\log _{3} 2, \log _{3}\left(2^{x}-5\right), \log _{3}\left(2^{x}-\frac{7}{2}\right)$ એ સમાંતર શ્રેણીમાં છે તો $x$ ની કિમંત મેળવો.
કોઇપણ ત્રણ ધન વાસ્તવિક સંખ્યાઓ $a,b,c$ માટે $9\left( {25{a^2} + {b^2}} \right) + 25\left( {{c^2} - 3ac} \right) = 15b\left( {3a + c} \right)$તો:
બે સમાંતર શ્રેણીઓનાં $n$ પદોના સરવાળાનો ગુણોત્તર $2n + 3 : 6n + 5$ હોય, તો તેના $13$ મા પદોનો ગુણોત્તર....... છે.