જે સમાંતર શ્રેણીનું $k$ મું પદ $5k + 1$ હોય તેના પ્રથમ પદનો સરવાળો શોધો.
It is given that the $k^{\text {th }}$ term of the $A.P.$ is $5 k+1$
$k^{\text {th }}$ term $=a_{k}+(k-1) d$
$\therefore a+(k-1) d=5 k+1$
$a+k d-d=5 k+1$
$\therefore$ Comparing the coefficient of $k ,$ we obtain $d=5$
$\Rightarrow a-d=1$
$\Rightarrow a-5=1$
$\Rightarrow a=6$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{n}{2}[2(6)+(n-1)(5)]$
$=\frac{n}{2}[12+5 n-5]$
$=\frac{n}{2}[5 n+7]$
એક સમાંતર શ્રેણીના $11$ માં પદના બમણા એ તેના $21$ માં પદના સાત ગણા જેટલા હોય, તો તેનું $25$ મું પદ ....... છે.
$7$ અને $71$ વચ્ચે $n$ સમાંતર મધ્યકો આવેલા છે. જો $5$ મો સમાંતર મધ્યક $27$ હોય તો $n=......$
સમાંતર શ્રેણીના પ્રથમ $p$ પદોનો સરવાળો, પ્રથમ $q$ પદોના સરવાળા જેટલો થાય છે, તો પ્રથમ $(p+q)$ પદોનો સરવાળો શોધો.
કોઇપણ ત્રણ ધન વાસ્તવિક સંખ્યાઓ $a,b,c$ માટે $9\left( {25{a^2} + {b^2}} \right) + 25\left( {{c^2} - 3ac} \right) = 15b\left( {3a + c} \right)$તો:
જો $x, y, z$ સમાંતર શ્રેણીમાં હોય અને $x$ અને $y$ સમાંતર મધ્યક $a$ હોય તો તથા $y$ અને $z$ નો સમાંતર મધ્યક $b$ હોય તો $a$ અને $b$ વચ્ચેનો સમાંતર મધ્યક ?