જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=(-1)^{n-1} 5^{n+1}$
Substituting $n=1,2,3,4,5,$ we obtain
$a_{1}=(-1)^{1-1} 5^{1+1}=5^{2}=25$
$a_{2}=(-1)^{2-1} 5^{2+1}=-5^{3}=-125$
$a_{3}=(-1)^{3-1} 5^{3+1}=5^{4}=625$
$a_{4}=(-1)^{4-1} 5^{4+1}=-5^{5}=-3125$
$a^{5}=(-1)^{5-1} 5^{5+1}=5^{6}=15625$
Therefore, the required terms are $25,-125,625,-3125$ and $15625 .$
જો $p,\;q,\;r$ ધન તેમજ સંમાતર શ્નેણીમાં હોય તો કઇ શરત માટે પ્રતિઘાત સમીકરણ $p{x^2} + qx + r = 0$ નાં બિજ વાસ્તવિક બને..
જો શ્રેણી $\sqrt 3 + \sqrt {75} + \sqrt {243} + \sqrt {507} + ......$ ના $n$ પદોનો સરવાળો $435\sqrt 3 $ થાય તો $n$ ની કિમત મેળવો.
જો $\log _e \mathrm{a}, \log _e \mathrm{~b}, \log _e \mathrm{c}$ $A.P.$ (સમાંતર શ્રેણી) માં હોય તથા $\log _e \mathrm{a}-\log _e 2 \mathrm{~b}, \log _e 2 \mathrm{~b}-$ $\log _e 3 \mathrm{c}, \log _e 3 \mathrm{c}-\log _e a $ પણ $A.P.$ માં હોય, તો $a: b: c=$____________.
ધારોકે $a, b, c$ સમાંતર શ્રેણીમાં છે. ધારો કે $(a, c), (2, b)$ અને $(a, b)$ શિરોબિંદુવાળા ત્રિકોણનું મધ્યકેન્દ્ર $\left(\frac{10}{3}, \frac{7}{3}\right)$ છે. જો સમીકરણ $ax ^{2}+ bx +1=0$ નાં બીજ $\alpha, \beta$ હોય, તો $\alpha^{2}+\beta^{2}-\alpha \beta$ નું મૂલ્ય ....... છે.
ગણ $\{\mathrm{n} \in\{1,2, \ldots \ldots ., 100\} \mid$ $n$ અને $2040$ નો ગુ.સા.અ $1$ થાય $\,\}$ ના બધાજ ઘટકોનો સરવાળો મેળવો.