જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=(-1)^{n-1} 5^{n+1}$
Substituting $n=1,2,3,4,5,$ we obtain
$a_{1}=(-1)^{1-1} 5^{1+1}=5^{2}=25$
$a_{2}=(-1)^{2-1} 5^{2+1}=-5^{3}=-125$
$a_{3}=(-1)^{3-1} 5^{3+1}=5^{4}=625$
$a_{4}=(-1)^{4-1} 5^{4+1}=-5^{5}=-3125$
$a^{5}=(-1)^{5-1} 5^{5+1}=5^{6}=15625$
Therefore, the required terms are $25,-125,625,-3125$ and $15625 .$
$x \geqslant 0$ માટે $4^{1+x}+4^{1-x}, \frac{\mathrm{K}}{2}, 16^x+16^{-x}$ એ એક સમાંતર શ્રેણીનાં ત્રણ ક્રમિક પદો હોય, તો $\mathrm{K}$ નું ન્યૂનતમ મૂલ્ય ........... છે.
શ્રેણી $2, 5, 8, 11,…..$ ના $n$ પદોનો સરવાળો $60100$ હોય, તો $n = …..$
સમાંતર શ્રેણી $b_{1}, b_{2}, \ldots,$ $b_{ m }$ નો સામાન્ય તફાવત એ સમાંતર શ્રેણી $a _{1}, a _{2}, \ldots, a _{ n }$ ના સામાન્ય તફાવત કરતાં $2$ વધારે છે જો $a _{40}=-159, a _{100}=-399$ અને $b _{100}= a _{70},$ હોય તો $b _{1}$ ની કિમત શોધો.
બધી બે અંકોની સંખ્યા કે જેને છ વડે ભાગતા શેષ ચાર મળે, તેનો સરવાળો કેટલો થાય ?
ધારો કે $\mathrm{S}_{\mathrm{n}}$ સમાંતર શ્રેણીનાં પહેલા $\mathrm{n}$ પદોનો સરવાળો દર્શાવે છે. જો $\mathrm{S}_{20}=790$ અને $\mathrm{S}_{10}=145$ હોય, તો $\mathrm{S}_{15}-\mathrm{S}_5=$....................