જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=(-1)^{n-1} 5^{n+1}$
Substituting $n=1,2,3,4,5,$ we obtain
$a_{1}=(-1)^{1-1} 5^{1+1}=5^{2}=25$
$a_{2}=(-1)^{2-1} 5^{2+1}=-5^{3}=-125$
$a_{3}=(-1)^{3-1} 5^{3+1}=5^{4}=625$
$a_{4}=(-1)^{4-1} 5^{4+1}=-5^{5}=-3125$
$a^{5}=(-1)^{5-1} 5^{5+1}=5^{6}=15625$
Therefore, the required terms are $25,-125,625,-3125$ and $15625 .$
ગણ $\{\mathrm{n} \in\{1,2, \ldots \ldots ., 100\} \mid$ $n$ અને $2040$ નો ગુ.સા.અ $1$ થાય $\,\}$ ના બધાજ ઘટકોનો સરવાળો મેળવો.
જો $a, b, c $ સમાંતર શ્રેણીમાં હોય, તો $(a + 2b - c) . (2b + c - a)(a + 2b + c) = ….$
જો સમાંતર શ્રેણીનું $p$ મું પદ $q$ અને તેનું $q$ મું પદ $p$ હોય, તો તેનું $(p + q)$ મું પદ કયું હોય ?
જો ${T_r}$ એ સમાંતર શ્રેણીનું ${r^{th}}$ મું પદ દર્શાવે કે જ્યાં $r = 1,\;2,\;3,....$.,જો કોઇક ધન પૂર્ણાંક $m,\;n$ માટે ${T_m} = \frac{1}{n}$ અને ${T_n} = \frac{1}{m}$, તો ${T_{mn}}$ મેળવો.
જો સમાંતર શ્રેણીના $n$ પદોનો સરવાળો $Pn + Qn^2$ હોય જ્યાં $P,\,Q$ અચળ, હોય તો તેમનો સામાન્ય તફાવત કેટલો થાય ?