શ્રેણી $2, 5, 8, 11,…..$ ના $n$ પદોનો સરવાળો $60100$ હોય, તો $n = …..$
$100$
$150$
$200$
$250$
શ્રેણી $a_{n}$ નીચે પ્રમાણે વ્યાખ્યાયિત છે :
${a_1} = 1,$ $n\, \ge \,2$ માટે ${a_n} = {a_{n - 1}} + 2.$
આ શ્રેણીનાં પ્રથમ પાંચ પદ લખો અને સંબંધિત શ્રેઢી લખો :
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં ${a_{20}}$પદ શોધો : $a_{n}=\frac{n(n-2)}{n+3}$
આપેલ શ્રેણીનાં પ્રથમ પાંચ પદ શોધો અને સંબંધિત શ્રેઢી મેળવો : $a_{1}=-1, a_{n}=\frac{a_{n-1}}{n},$ માટે $n\, \geq\, 2$
જો $x, y, z$ સમાંતર શ્રેણીમાં હોય અને $tan^{-1}x, tan^{-1}y$ અને $tan^{-1}z$ પણ સમાંતર શ્રેણીમાં હોય, તો......
ગણ $\{\alpha \in\{1,2, \ldots, 100\}$ ગુ.સા.અ.$(\alpha, 24)=1\}$ ના તમામ ધટકોનો સરવાળો