જો સમાંતર શ્રેણીનાં $p^{\text {th }}, q^{\text {th }}$ અને $r^{\text {th }}$ માં પદો અનુક્રમે $a, b, c$ હોય તો બતાવો કે, $(q-r) a+(r-p) b+(p-q) c=0$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $t$ and $d$ be the first term and the common difference of the $A.P.$ respectively. 

The $n^{th}$ term of an $A.P.$ is given by, $a_{n}=t+(n-1) d$

Therefore,

$a_{p}=t+(p-1) d=a$        .........$(1)$

$a_{q}=t+(q-1) d=b$        .........$(2)$

$a_{r}=t+(r-1) d=c$        .........$(3)$

Subtracting equation $(2)$ from $(1),$ we obtain

$(p-1-q+1) d=a-b$

$\Rightarrow(p-q) d=a-b$

$\therefore d=\frac{a-b}{p-q}$           .........$(4)$

Subtracting equation $(3)$ from $(2),$ we obtain

$(q-1-r+1) d=b-c$

$\Rightarrow(q-r) d=b-c$

$\Rightarrow d=\frac{b-c}{q-r}$          .........$(5)$

Equating both the values of $d$ obtained in $(4)$ and $(5),$ we obtain

$\frac{a-b}{p-q}=\frac{b-c}{q-r}$

$\Rightarrow(a-b)(q-r)=(b-c)(p-q)$

$\Rightarrow a q-b q-a r+b r=b p-b q-c p+c q$

$\Rightarrow b p-c p+c q-a q+a r-b r=0$

$\Rightarrow(-a q+a r)+(b p-b r)+(-c p+c q)=0$            ( By rearranging terms )

$\Rightarrow-a(q-r)-b(r-p)-c(p-q)=0$

$\Rightarrow a(q-r)+b(r-p)+c(p-q)=0$

Thus, the given result is proved.

Similar Questions

બે સમાંતર શ્રેણીઓનાં $n$ પદોના સરવાળાનો ગુણોત્તર $2n + 3 : 6n + 5$ હોય, તો તેના $13$ મા પદોનો ગુણોત્તર....... છે.

એક વ્યક્તિ તેની લોનની ચુકવણી માટે પ્રથમ હપતામાં $Rs.$ $100 $ ભરે છે. જો તે દર મહિને હપતાની રકમમાં $Rs \,5$ વધારે ભરે, તો તેના $30$ માં હપતામાં કેટલી રકમ ચૂકવશે?

ફિબોનાકી શ્રેણી,

$1 = {a_1} = {a_2}{\rm{ }}$ અને $n\, > \,2$ માટે${a_n} = {a_{n - 1}} + {a_{n - 2}},$ દ્વારા વ્યાખ્યાયિત થાય છે.

$n=1,2,3,4,5$ માટે $\frac{a_{n+1}}{a_{n}},$ મેળવો.

જો $a^{1/x} = b^{1/y} = c^{1/z}$ અને $a, b, c$ સમગુણોત્તર શ્રેણીમાં હોય, તો $x, y$ અને $z$ એ.....

વિધાન- I : બે સમાંતર શ્રેણીના $n$ પદોનો સરવાળો ગુણોત્તર $(7n + 1) : (4n + 17)$ હોય, તો તેમના $n$ માં પદોનો ગુણાકાર $7 : 4$ થાય.વિધાન- II : જો $S_n = an^2 + bn + c,$ હોય, તો $T_n = S_n - S_{n-1}$ થાય.