જો સમાંતર શ્રેણીનાં $p^{\text {th }}, q^{\text {th }}$ અને $r^{\text {th }}$ માં પદો અનુક્રમે $a, b, c$ હોય તો બતાવો કે, $(q-r) a+(r-p) b+(p-q) c=0$
Let $t$ and $d$ be the first term and the common difference of the $A.P.$ respectively.
The $n^{th}$ term of an $A.P.$ is given by, $a_{n}=t+(n-1) d$
Therefore,
$a_{p}=t+(p-1) d=a$ .........$(1)$
$a_{q}=t+(q-1) d=b$ .........$(2)$
$a_{r}=t+(r-1) d=c$ .........$(3)$
Subtracting equation $(2)$ from $(1),$ we obtain
$(p-1-q+1) d=a-b$
$\Rightarrow(p-q) d=a-b$
$\therefore d=\frac{a-b}{p-q}$ .........$(4)$
Subtracting equation $(3)$ from $(2),$ we obtain
$(q-1-r+1) d=b-c$
$\Rightarrow(q-r) d=b-c$
$\Rightarrow d=\frac{b-c}{q-r}$ .........$(5)$
Equating both the values of $d$ obtained in $(4)$ and $(5),$ we obtain
$\frac{a-b}{p-q}=\frac{b-c}{q-r}$
$\Rightarrow(a-b)(q-r)=(b-c)(p-q)$
$\Rightarrow a q-b q-a r+b r=b p-b q-c p+c q$
$\Rightarrow b p-c p+c q-a q+a r-b r=0$
$\Rightarrow(-a q+a r)+(b p-b r)+(-c p+c q)=0$ ( By rearranging terms )
$\Rightarrow-a(q-r)-b(r-p)-c(p-q)=0$
$\Rightarrow a(q-r)+b(r-p)+c(p-q)=0$
Thus, the given result is proved.
એક સમાંતર શ્રેણીનાં $n$ પદોનો સરવાળો $3 n^{2}+5 n$ અને $m$ મું પદ $164$ છે, તો $m$ નું મૂલ્ય શોધો.
પ્રત્યેક પ્રાકૃતિક સંખ્યા $n$ માટે બે સમાંતર શ્રેણીનાં પ્રથમ $n$ પદોના સરવાળાનો ગુણોત્તર $5 n+4: 9 n+6 .$ છે. તેમનાં $18$ માં પદનો ગુણોત્તર મેળવો.
$100$ અને $1000$ વચ્ચેની $5$ ની ગુણિત પ્રાકૃતિક સંખ્યાઓનો સરવાળો શોધો.
શ્રેણી $a_{n}=(n-1)(2-n)(3+n)$ નું $20$ મું પદ કર્યું હશે ?
શ્રેણી $2,\,5,\,8...$ ના $2n$ પદનો સરવાળો એ શ્રેણી $57,\,59,\,61...$,ના $n$ પદના સરવાળા બરાબર હોય તો $n$ મેળવો.