જો સમાંતર શ્રેણીનાં $p^{\text {th }}, q^{\text {th }}$ અને $r^{\text {th }}$ માં પદો અનુક્રમે $a, b, c$ હોય તો બતાવો કે, $(q-r) a+(r-p) b+(p-q) c=0$
Let $t$ and $d$ be the first term and the common difference of the $A.P.$ respectively.
The $n^{th}$ term of an $A.P.$ is given by, $a_{n}=t+(n-1) d$
Therefore,
$a_{p}=t+(p-1) d=a$ .........$(1)$
$a_{q}=t+(q-1) d=b$ .........$(2)$
$a_{r}=t+(r-1) d=c$ .........$(3)$
Subtracting equation $(2)$ from $(1),$ we obtain
$(p-1-q+1) d=a-b$
$\Rightarrow(p-q) d=a-b$
$\therefore d=\frac{a-b}{p-q}$ .........$(4)$
Subtracting equation $(3)$ from $(2),$ we obtain
$(q-1-r+1) d=b-c$
$\Rightarrow(q-r) d=b-c$
$\Rightarrow d=\frac{b-c}{q-r}$ .........$(5)$
Equating both the values of $d$ obtained in $(4)$ and $(5),$ we obtain
$\frac{a-b}{p-q}=\frac{b-c}{q-r}$
$\Rightarrow(a-b)(q-r)=(b-c)(p-q)$
$\Rightarrow a q-b q-a r+b r=b p-b q-c p+c q$
$\Rightarrow b p-c p+c q-a q+a r-b r=0$
$\Rightarrow(-a q+a r)+(b p-b r)+(-c p+c q)=0$ ( By rearranging terms )
$\Rightarrow-a(q-r)-b(r-p)-c(p-q)=0$
$\Rightarrow a(q-r)+b(r-p)+c(p-q)=0$
Thus, the given result is proved.
સમાંતર શ્રેણીનાં $n $ પદોનો સરવાળો $nA + n^2B$ છે, જ્યાં $A$ અને $B$ અચળ છે, તો આ શ્રેણીનો સામાન્ય તફાવત....... છે.
સમાંતર શ્રેણીમાં યુગ્મ પદ છે. જો તેમાં રહેલ અયુગ્મ પદનો સરવાળો $24$ અને યુગ્મ પદનો સરવાળો $30$ છે. જો અંતિમ પદ પ્રથમ પદ કરતાં $10\frac{1}{2}$ જેટલું વધારે હોય તો સમાંતર શ્રેણીના પદની સંખ્યા મેળવો.
એક માણસ તેની નોકરીના પ્રથમ ત્રણ મહિનામાં $200$ રૂપિયાની બચત કરે છે. તે પછીના મહિનામાં તેની બચત પહેલાંના મહિના કરતાં $40$ રૂપિયા છે. નોકરીની શરૂઆતથી કેટલા ................. મહિના પછી તેની કુલ બચત $11040$ રૂપિયા થશે ?
શ્રેણીઓ $S _1=3+7+11+15+19+\ldots$ અને $S _2=1+6+11+16+21+\ldots$ નું સામાન્ય $8$મું પદ $............$ છે.
જો $a$ અને $b$ વચ્ચેનો સમાંતર મધ્યક $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ ન હોય, તો $n$ નું મૂલ્ય શોધો.