જો સમાંતર શ્રેણીનાં $p^{\text {th }}, q^{\text {th }}$ અને $r^{\text {th }}$ માં પદો અનુક્રમે $a, b, c$ હોય તો બતાવો કે, $(q-r) a+(r-p) b+(p-q) c=0$
Let $t$ and $d$ be the first term and the common difference of the $A.P.$ respectively.
The $n^{th}$ term of an $A.P.$ is given by, $a_{n}=t+(n-1) d$
Therefore,
$a_{p}=t+(p-1) d=a$ .........$(1)$
$a_{q}=t+(q-1) d=b$ .........$(2)$
$a_{r}=t+(r-1) d=c$ .........$(3)$
Subtracting equation $(2)$ from $(1),$ we obtain
$(p-1-q+1) d=a-b$
$\Rightarrow(p-q) d=a-b$
$\therefore d=\frac{a-b}{p-q}$ .........$(4)$
Subtracting equation $(3)$ from $(2),$ we obtain
$(q-1-r+1) d=b-c$
$\Rightarrow(q-r) d=b-c$
$\Rightarrow d=\frac{b-c}{q-r}$ .........$(5)$
Equating both the values of $d$ obtained in $(4)$ and $(5),$ we obtain
$\frac{a-b}{p-q}=\frac{b-c}{q-r}$
$\Rightarrow(a-b)(q-r)=(b-c)(p-q)$
$\Rightarrow a q-b q-a r+b r=b p-b q-c p+c q$
$\Rightarrow b p-c p+c q-a q+a r-b r=0$
$\Rightarrow(-a q+a r)+(b p-b r)+(-c p+c q)=0$ ( By rearranging terms )
$\Rightarrow-a(q-r)-b(r-p)-c(p-q)=0$
$\Rightarrow a(q-r)+b(r-p)+c(p-q)=0$
Thus, the given result is proved.
સમગુણોત્તર શ્રેણીના કેટલાક પદોનો સરવાળો $728$ છે, જો સામાન્ય ગુણોત્તર $3$ હોય અને છેલ્લું પદ $486$ તો શ્રેણીનું પહેલું પદ શું હોય?
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=n(n+2)$
$1 + 3 + 5 + 7 + …n$ પદ સુધી =…..
જો $S_n$ અને $s_n$ એ $n$ પદો ધરાવતી બે ભિન્ન સમાંતર શ્રેણી છે કે જેના માટે $\frac{{{s_n}}}{{{S_n}}} = \frac{{3n - 13}}{{7n + 13}}$ હોય તો $\frac{{{s_n}}}{{{S_{2n}}}}$ ની કિમત મેળવો
સમાંતર શ્રેણીના પદો ${{\text{a}}_{\text{1}}}\text{, }{{\text{a}}_{\text{2}}}\text{, }{{\text{a}}_{\text{3}}}\text{, }......\text{ }$ લો. જો $\frac{{{a}_{1}}\,+\,\,{{a}_{2}}\,+\,....\,+\,\,{{a}_{p}}}{{{a}_{1}}\,+\,\,{{a}_{2}}\,+\,....\,+\,\,{{a}_{q}}}$ $=\,\frac{{{p}^{2}}}{{{q}^{2}}},\,p\,\,\ne \,\,q$ હોય,તો $\,\frac{{{a}_{6}}}{{{a}_{21}}}\,\,=\,\,.......$