જો $a, b, c,d$ સમગુણોત્તર શ્રેણીમાં હોય, તો સાબિત કરો કે $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ સમગુણોત્તર શ્રેણીમાં છે.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $a, b, c$ and $d$ are in $G.P.$

$\therefore b^{2}=a c$       ........$(1)$

$c^{2}=b d$       ........$(2)$

$a d=b c$       ........$(3)$

It has to be proved that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in $G.P.$ i.e.,

$\left(b^{n}+c^{n}\right)^{2}=\left(a^{n}+b^{n}\right),\left(c^{n}+d^{n}\right)$

Consider $L.H.S.$

$\left(b^{n}+c^{n}\right)^{2}=b^{2 n}+2 b^{n} c^{n}+c^{2 n}$

$=\left(b^{2}\right)^{n}+2 b^{n} c^{n}+\left(c^{2}\right)^{n}$

$=(a c)^{n}+2 b^{n} c^{n}+(b d)^{n}$            [ Using $(1)$ and $(2)$ ]

$=a^{n} c^{n}+b^{n} c^{n}+b^{n} c^{n}+b^{n} d^{n}$

$=a^{n} c^{n}+b^{n} c^{n}+a^{n} d^{n}+b^{n} d^{n}$         [ Using $(3)$ ]

$=c^{n}\left(a^{n}+b^{n}\right)+d^{n}\left(a^{n}+b^{n}\right)$

$=\left(a^{n}+b^{n}\right)\left(c^{n}+d^{n}\right)=$ $\mathrm{R.H.S.}$

$\therefore\left(b^{n}+c^{n}\right)^{2}=\left(a^{n}+b^{n}\right)\left(c^{n}+d^{n}\right)$

Thus, $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),$ and $\left(c^{n}+d^{n}\right)$ are in $G.P.$

Similar Questions

$7$ અને $71$ વચ્ચે $n$ સમાંતર મધ્યકો આવેલા છે. જો $5$ મો સમાંતર મધ્યક $27$ હોય તો $n=......$

સમાંતર શ્રેણીના પ્રથમ $p$ પદોનો સરવાળો, પ્રથમ $q$ પદોના સરવાળા જેટલો થાય છે, તો પ્રથમ $(p+q)$ પદોનો સરવાળો શોધો. 

જો $\tan \left(\frac{\pi}{9}\right), x, \tan \left(\frac{7 \pi}{18}\right)$ એ સમાંતર શ્રેણીમાં છે અને $\tan \left(\frac{\pi}{9}\right), y, \tan \left(\frac{5 \pi}{18}\right)$ એ પણ સમાંતર શ્રેણીમાં  હોય તો $|x-2 y|$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

જો $x, y, z$ સમાંતર શ્રેણીમાં હોય અને $tan^{-1}x, tan^{-1}y$ અને $tan^{-1}z$ પણ સમાંતર શ્રેણીમાં હોય, તો......

આપેલ શ્રેણીનાં પ્રથમ પાંચ પદ શોધો અને સંબંધિત શ્રેઢી મેળવો : $a_{1}=a_{2}=2, a_{n}=a_{n-1}-1,$ માટે $n\,>\,2$