જો $a, b, c,d$ સમગુણોત્તર શ્રેણીમાં હોય, તો સાબિત કરો કે $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ સમગુણોત્તર શ્રેણીમાં છે.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $a, b, c$ and $d$ are in $G.P.$

$\therefore b^{2}=a c$       ........$(1)$

$c^{2}=b d$       ........$(2)$

$a d=b c$       ........$(3)$

It has to be proved that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in $G.P.$ i.e.,

$\left(b^{n}+c^{n}\right)^{2}=\left(a^{n}+b^{n}\right),\left(c^{n}+d^{n}\right)$

Consider $L.H.S.$

$\left(b^{n}+c^{n}\right)^{2}=b^{2 n}+2 b^{n} c^{n}+c^{2 n}$

$=\left(b^{2}\right)^{n}+2 b^{n} c^{n}+\left(c^{2}\right)^{n}$

$=(a c)^{n}+2 b^{n} c^{n}+(b d)^{n}$            [ Using $(1)$ and $(2)$ ]

$=a^{n} c^{n}+b^{n} c^{n}+b^{n} c^{n}+b^{n} d^{n}$

$=a^{n} c^{n}+b^{n} c^{n}+a^{n} d^{n}+b^{n} d^{n}$         [ Using $(3)$ ]

$=c^{n}\left(a^{n}+b^{n}\right)+d^{n}\left(a^{n}+b^{n}\right)$

$=\left(a^{n}+b^{n}\right)\left(c^{n}+d^{n}\right)=$ $\mathrm{R.H.S.}$

$\therefore\left(b^{n}+c^{n}\right)^{2}=\left(a^{n}+b^{n}\right)\left(c^{n}+d^{n}\right)$

Thus, $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),$ and $\left(c^{n}+d^{n}\right)$ are in $G.P.$

Similar Questions

એક સમાંતર શ્રેણીના $11$ માં પદના બમણા એ તેના $21$ માં પદના સાત ગણા જેટલા હોય, તો તેનું $25$ મું પદ ....... છે.

એક સમાંતર શ્રેણીનાં $n$ પદોનો સરવાળો $3 n^{2}+5 n$ અને $m$ મું પદ $164$ છે, તો $m$ નું મૂલ્ય શોધો.

જો $a_1, a_2, .. a_{24}$ સમાંતર શ્રેણીમાં હોય અને $a_1 + a_5 + a_{10} + a_{15} + a_{20} + a_{24} = 225$ થાય, તો આ સમાંતર શ્રેણીના $24$ પદોનો સરવાળો કેટલો થાય ?

સમાંતર શ્રેણીના પ્રથમ $10$  પદોનો સરવાળો તેના પ્રથમ $5$ પદના સરવાળાથી $4$ ગણો હોય, તો તેના પ્રથમ પદ અને સામાન્ય તફાવતનો ગુણોત્તર...... છે.

જો સમાંતર શ્રેણી નું $p$  મું, $q$  મું , $r$  મું પદ અનુક્રમે  $1/a, 1/b, 1/c$   હોય તો $ab(p - q) + bc(q - r) + ca(r - p) = …….$