- Home
- Standard 11
- Mathematics
જો $\left( {_{r - 1}^{\,\,n}} \right) = 36,\left( {_r^n} \right) = 84$ અને $\,\left( {_{r + 1}^{\,\,n}} \right) = 126\,$ હોય , તો $r\, = \,\,..........$
$1$
$2$
$3$
$4$
Solution
$\left( {\begin{array}{*{20}{c}}
n \\
{r – 1}
\end{array}} \right)\,:\,\left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right)\,\, = \,36\,:\,84\,$ અને $\left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right)\,:\,\left( {\begin{array}{*{20}{c}}
n \\
{r + 1}
\end{array}} \right)\, = \,84\,:\,126$
$\frac{{n\,!}}{{(r – 1)(n – r + 1)\,!}}.\,\frac{{r\,!(n – r)\,!}}{{n\,!}} = \frac{3}{7}\,$
$\frac{{n\,!}}{{r\,!(n – r)!}}.\,\frac{{(r + 1)\,!\,(n – r – 1)\,!}}{{n\,!}} = \frac{2}{3}$ અને
$\frac{{n\,!}}{{r\,!(n – r)!}}.\,\frac{{(r + 1)\,!\,(n – r – 1)\,!}}{{n\,!}} = \frac{2}{3}$
$\frac{r}{{n – r + 1}} = \frac{3}{7}$ અને $\frac{{r + 1}}{{n – r}} = \frac{2}{3}$
$7r = 3n – 3r + 3$ અને $3r + 3 = 2n – 2r$
$3n – 10r = -3$ અને $2n – 5r = 3$ એટલે કે, $4n – 10r = 6$
બંને સમીકરણ ઉકેલતાં $n = 9, r = 3$