- Home
- Standard 11
- Mathematics
જો ${a_n}\, = \,\sum\limits_{r\, = \,0}^n {\frac{1}{{\left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right)}}} $ તો $\sum\limits_{r\, = \,0}^n {\,\frac{r}{{\left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right)}}\, = \,.....} $
$(n - 1) a_n$
$na_n$
$\frac{n}{2}\,{a_n}$
$(n + 1) a_n$
Solution
$\sum\limits_{r = 0}^n {\,\frac{r}{{\left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right)}}} \, = \,\frac{0}{{\left( {\begin{array}{*{20}{c}}
n \\
0
\end{array}} \right)}}\, + \,\frac{1}{{\left( {\begin{array}{*{20}{c}}
n \\
1
\end{array}} \right)}}\, + \,\frac{2}{{\left( {\begin{array}{*{20}{c}}
n \\
2
\end{array}} \right)}}\, + \,…..\, + \,\frac{{n\, – \,1}}{{\left( {\begin{array}{*{20}{c}}
n \\
{n\, – \,1}
\end{array}} \right)}}\, + \,\frac{n}{{\left( {\begin{array}{*{20}{c}}
n \\
n
\end{array}} \right)}}$
$\sum\limits_{r = 0}^n {\,\frac{r}{{\left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right)}}} \, = \,\frac{0}{{\left( {\begin{array}{*{20}{c}}
n \\
n
\end{array}} \right)}}\, + \,\frac{1}{{\left( {\begin{array}{*{20}{c}}
n \\
{n\, – \,1}
\end{array}} \right)}}\, + \,\frac{2}{{\left( {\begin{array}{*{20}{c}}
n \\
{n\, – \,2}
\end{array}} \right)}}\, + \,……\, + \,\frac{{n\, – \,1}}{{\left( {\begin{array}{*{20}{c}}
n \\
1
\end{array}} \right)}}\, + \,\frac{n}{{\left( {\begin{array}{*{20}{c}}
n \\
0
\end{array}} \right)}}\,….\,(2)\,$
$\left[ {\because \,\left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right)\, = \,\left( {\begin{array}{*{20}{c}}
n \\
{n\, – \,2}
\end{array}} \right)} \right]$
હવે
$\,{\text{(1) + (2) }}\, \Rightarrow \,2\,\sum\limits_{r\, = \,0}^n {\frac{r}{{\left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right)}}\, = \,\frac{n}{{\left( {\begin{array}{*{20}{c}}
n \\
0
\end{array}} \right)}}} \, + \,\frac{n}{{\left( {\begin{array}{*{20}{c}}
n \\
1
\end{array}} \right)}}\, + \,……\, + \,\frac{n}{{\left( {\begin{array}{*{20}{c}}
n \\
n
\end{array}} \right)}}$
$ = \,n\,\left[ {\frac{1}{{\left( {\begin{array}{*{20}{c}}
n \\
0
\end{array}} \right)}}\, + \,\frac{1}{{\left( {\begin{array}{*{20}{c}}
n \\
1
\end{array}} \right)}}\, + \,…..\, + \,\frac{1}{{\left( {\begin{array}{*{20}{c}}
n \\
n
\end{array}} \right)}}} \right] = \,n\,\sum\limits_{r\, = \,0}^n {\frac{1}{{\left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right)}}} \, = \,n{a_n}$
$\sum\limits_{r\, = 0}^n {\,\frac{r}{{\left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right)}}} \, = \,\frac{n}{2}\,{a_n}$