$x$ ની બધી જ વાસ્તવિક કિંમતો માટે $\frac{x}{{{x^2}\, + \,4}}$ ની કિંમતનો વિસ્તાર કેટલો થશે ?
$\frac{{ - 1}}{2}\,\, \le \,\,y\,\, \le \,\,\frac{1}{2}$
$\frac{{ - 1}}{4}\,\, \le \,\,y\,\, \le \,\,\frac{1}{4}$
$\frac{{ - 1}}{6}\,\, \le \,\,y\,\, \le \,\,\frac{1}{6}$
આપેલ પૈકી એકપણ નહિ.
અહી ગણ $\mathrm{S}$ એ $a$ ની પૃણાંક કિમંતો નો ગણ છે કે જેથી $\frac{\mathrm{ax}^2+2(\mathrm{a}+1) \mathrm{x}+9 \mathrm{a}+4}{\mathrm{x}^2-8 \mathrm{x}+32}<0, \forall \mathrm{x} \in \mathbb{R}$ નું પાલન થાય છે તો ગણ $\mathrm{S}$ ની સભ્ય સંખ્યા મેળવો.
સમીકરણ $x|x|-5|x+2|+6$ = 0ના વાસ્તવિક બીજોની સંખ્યા $..........$ છે.
જો $p, q$ અને $r$ $(p \ne q,r \ne 0),$ વાસ્તવિક સંખ્યા છે કે જેથી $\frac{1}{{x + p}} + \frac{1}{{x + q}} = \frac{1}{r}$ ના ઉકેલો સમાન મુલ્ય અને વિરુદ્ધ ચિહનના હોય તો બંને ઉકેલોના વર્ગ નો સરવાળો મેળવો.
જો $2 + 3i$ એ સમીકરણ $2x^3 -9x^2 + kx- 13 = 0,$ $k \in R,$ નો એક ઉકેલ હોય તો આ સમીકરણના વાસ્તવિક ઉકેલ મેળવો.
સમીકરણ $x^2 + 2 | x | -15\geq 0$ નો ઉકેલ કેવી રીતે આપી શકાય ?